Celle solari a perovskite: “Marie Curie Global Fellowship” a Luigi Castriotta, Elettronica, per il progetto “EFESO”

Celle solari a perovskite: “Marie Curie Global Fellowship” a Luigi Castriotta,  Elettronica, per il progetto “EFESO”
MSCA banner Individual Fellowhips

di Pamela Pergolini

Energia sostenibile e transizione energetica anche grazie ai sistemi fotovoltaici di ultima generazione basati sulla perovskite, un minerale  costituito da titanato di calcio scoperto nei Monti Urali, in Russia, alla metà dell’ottocento. L’Unione europea premia la ricerca nell’energia solare attribuendo il riconoscimento “Marie Curie Global Fellowship”, il più prestigioso del programma Marie Curie, a Luigi Angelo Castriotta, assegnista di ricerca a “Tor Vergata” presso il Dipartimento di Ingegneria Elettronica, per il progetto “EFESO” – l’acronimo sta per “Exploiting Flexible pErovskites Solar technOlogies” – che ha l’obiettivo di migliorare l’efficienza e la stabilità di moduli solari a perovskite fabbricati su substrati flessibili. La ricerca è finanziata da Marie Skodolska Curie Action (MSCA) – Bando Global Fellowship 2021 e durerà tre anni.  
Abbiamo chiesto a Luigi Angelo Castriotta di raccontarci qualcosa in più del suo progetto.
D. Partiamo dalla perovskite, quali sono le sue potenzialità?
R. La perovskite si è rivelata un materiale energetico inorganico a basso costo più efficiente da utilizzare nelle celle solari. A differenza del silicio, la perovskite infatti può essere fabbricata a temperatura ambiente ma rispetto al silicio è notoriamente meno efficiente nel tempo: per questo motivo molte ricerche negli ultimi anni si sono focalizzate sul superamento di questa sfida».
D. L’efficienza delle celle solari a perovskite è passata dal 3% nel 2009 al 25.8% nel 2023 in soli 14 anni dalla sua scoperta, eguagliando, quasi, il record del silicio, che ha raggiunto un’efficienza del 26.1%. In che modo il progetto intende migliorare la stabilità nel tempo della perovskite e portare, dunque, questa tecnologia verso la commercializzazione?
R.
“EFESO” mira a rendere più duraturi i moduli solari flessibili in perovskite ottimizzando il loro processo di fabbricazione su substrati flessibili. Il progetto si articola in tre fasi principali. 
1. Valutazione dei materiali – da quello che compone la perovskite, che è il semiconduttore, agli additivi, che vengono aggiunti per il suo potenziamento, ai materiali che trasportano la carica elettrica
2. Fabbricazione e caratterizzazione dei dispositivi, riducendo le aree inattive sui moduli e lavorando sull’intrappolamento del piombo
3.  “Upscaling”, è rivolta all’ottimizzazione del design e dei processi di produzione di celle solari realizzate su grande scala per applicazioni indoor e outdoor. Questo grazie a procedure standard che permettono di creare un collegamento in serie tra le celle e ridurre le perdite di efficienza riscontrate per dispositivi di grandi superfici.
D. Nella seconda fase, quella della fabbricazione delle celle solari, si fa riferimento all’intrappolamento del piombo, perché?
R. Uno degli elementi principali della perovskite è il piombo. che deve essere intrinsecamente “incapsulato” nella perovskite per evitare che a contatto, ad esempio, con l’acqua piovana, diventi tossico. Questa operazione si effettua tramite la tecnica del “drogaggio”, l’aggiunta di materiali estranei nella perovskite, e utilizzando l’ingegneria dell’interfaccia, ovvero giocando con i materiali e le loro superfici nel passaggio della perovskite dallo stato liquido a quello solido.
D. L’attività di ricerca inizierà a giugno 2023 e terminerà a giugno 2026, come si svolgerà?
R. La ricerca verrà condotta in collaborazione tra l’Università di Roma “Tor Vergata” – CHOSE (Centre for Hybrid and Organic Solar Energy), l’Università del North Carolina (UNC) e l’azienda SAULE Technologies (Polonia), che si occupa dello sviluppo di celle solari innovative in perovskite. Passerò inizialmente 21 mesi negli Stati Uniti, a Chapel Hill, per poi tornare in Europa dove mi fermerò 12 mesi presso l’Università “Tor Vergata”. Infine, gli ultimi 3 mesi, lavorerò a Breslavia (Polonia), alla “Saule Technologies”.
Oltre al prestigio dal punto di vista scientifico, il riconoscimento è particolarmente importante perché per i ricercatori che hanno svolto un progetto triennale finanziato come “Marie Curie Global Fellowship”, un decreto ministeriale del 2015 prevede la possibilità di “chiamata diretta” come ricercatore di tipo b. 
 
LE PAROLE DELLA SCIENZA 
La parola del giorno 
DROGAGGIO  s. m. [der. di drogare]. – 1. Trattamento con droghe, somministrazione di droghe, uso di droghe, cioè di stupefacenti, allucinogeni, ecc., o in genere di farmaci eccitanti. Il termine è oggi diffuso (e prevale su drogatura) soprattutto con riferimento ad ambienti sportivi, come equivalente dell’ingl. doping. 2. Per estens., nel linguaggio tecn. e scient., l’introduzione di quantità controllate di atomi estranei in un composto puro (generalm. un cristallo), al fine di modificarne le proprietà: procedura usata, per es., per determinare le caratteristiche elettriche nei semiconduttori (Fonte: Treccani)
Notizie correlate 
Nasce il primo parco solare con tecnologia innovativa che combina perovskite e materiali bidimensionali. I risultati su “Nature Energy”

 

Ing&Media – «I gemelli digitali per sperimentare farmaci e terapie» L’intervista al prof. Saggio – Il Messaggero

Ing&Media – «I gemelli digitali per sperimentare farmaci e terapie» L’intervista al prof. Saggio – Il Messaggero
Il professor Giovanni Saggio, docente di Elettronica presso Dipartimento di Ingegneria Elettronica dell’Università di Roma “Tor Vergata”, è a capo dell’ambizioso e innovativo progetto “VHS – Virtual Human Simulator”, presentato recentemente alla conferenza di Ingegneria biomedica “Biostec 2023” a Lisbona. Intervistato da “Il Messaggero” (13.03.2023), racconta come – grazie alla collaborazione del polo di ricerca Technoscience dell’Università San Raffaele di Roma, il concetto del “digital twin” è stato esteso all’essere umano. La definizione di “digital twin” fu utilizzata per la prima volta nel 2002 da Micheael Grieves, che durante un corso di “Product Lifecycle Management descrisse il gemello digitale come l’equivalente virtuale di un prodotto fisico. 
Per creare una “copia” digitale di un essere umano al fine di controllarne la salute, prevenire patologie e curarle con maggior precisione è necessario monitorare diversi parametri attraverso la raccolta di dati, a vari livelli, la cui elaborazione richiede una enorme potenza di calcolo. «Ora siamo nella fase embrionale del progetto del Simulatore Virtuale Umano, perché vincolati ai computer tradizionali, ma virtualmente possiamo spingerci oltre nel prossimo futuro quando la nuova tecnologia, pensiamo ai Quantum Computer, ci consentiranno di lavorare dati giganteschi e permetteranno di far diventare realtà la virtualizzazione umana sull’intero corpo umano, che invece oggi ci consente di concentrarci solo su alcuni organi o porzioni di organismo», afferma il professor Saggio nell’intervista.
Tecnologia – Le parole del futuro «I gemelli digitali per sperimentare farmaci e terapie», di Paolo Travisi, Il Messaggero, pag. 17, edizione nazionale, 13.03.2023
#ingegneriaelettronica #biomedicina

Bioelettronica: controllare il comportamento delle cellule attraverso la luce, una ricerca tra l’ingegneria e la biologia medica

Bioelettronica: controllare il comportamento delle cellule attraverso la luce,  una ricerca tra l’ingegneria  e la biologia medica
  • Figura 1 -Piattaforma bio-fotoelettrolitica a polimeri semiconduttori. Schema dell'architettura aperta (a sinistra) e chiusa a sandwich (a destra)
  • Figura 2 - Analisi della dinamica del calcio cellulare. Le immagini vengono acquisite prima (basale) e dopo (indotta) 30 minuti di fotostimolazione. La fluorescenza verde è collegata ai livelli di calcio intracellulare e indicata come fluorescenza cellulare totale correlata (CTCF) ± SEM. Barra della scala 50 µm
  • Figura 3: Segnali bioelettrici registrati utilizzando la piattaforma bio-fotoelettrolitica chiusa a sandwich (a sinistra) e il patch-clamp (a destra) da cellule coltivate sul film sottile polimerico semiconduttore

 

di Pamela Pergolini

Misurazione e controllo della proliferazione di cellule viventi mediante impulsi luminosi: siamo nel campo della bioelettronica, a cavallo tra l’ingegneria e la biologia. L’ultima frontiera è quella di riuscire a controllare selettivamente attraverso la luce l’attività delle cellule e tessuti viventi per applicazioni terapeutiche e diagnostiche. Un team internazionale di ricercatori, guidato dall’Università degli Studi di Roma “Tor Vergata”, grazie al lavoro di ingegneri elettronici e biologi medici, ha realizzato una bio-piattaforma optoelettronica sia per la coltura delle cellule, sotto stimolazione luminosa (architettura aperta), sia per l’analisi dei segnali bioelettrici di cellule coltivate al suo interno (architettura chiusa), utilizzando un polimero organico sensibile alla luce. Il dispositivo, compatto e facile da utilizzare, permette di controllare, attraverso l’impiego di stimoli luminosi, la proliferazione di cellule tumorali e di registrare l’attività bioelettrica del sistema.
I risultati sono stati pubblicati nell’articolo “A Polymer Bio–Photoelectrolytic Platform for Electrical Signal Measurement and for Light Modulation of Ion Fluxes and Proliferation in a Neuroblastoma Cell Line” pubblicato sulla rivista internazionale open access “Advanced NanoBioMed Research”. Il team multidisciplinare è composto da Libera Università di Bolzano (Facoltà di Scienze e Tecnologie), Istituto di Struttura della Materia (CNR-ISM, Rome, Italy),  Cicci Research (Grosseto, Italy) ed Eurac Research (Istituto di Biomedicina, Bolzano), Penn State University (Pennsylvania, USA) ed è coordinato dall’Università  Roma “Tor Vergata”
Il Dipartimento di Ingegneria Elettronica ha collaborato alla realizzazione delle biopiattaforma mentre il Dipartimento di Biomedicina e Prevenzione si è occupato di studiare il comportamento cellulare riscontrando una relazione tra l’aumento di calcio intracellulare, in seguito alla stimolazione della luce, e il rallentamento della proliferazione delle cellule tumorali. I risultati della ricerca possono aprire nuove strade verso tecniche non invasive di controllo delle cellule per applicazioni in biofotonica e biomedicina e per terapie innovative nella cura dei tumori». Ne abbiamo parlato con i ricercatori. 
«Lo studio -spiega Thomas M. Brown, Dipartimento Ingegneria Elettronica di “Tor Vergata”, coordinatore del gruppo di ricerca – ha dimostrato che è possibile inibire la proliferazione cellulare del 50% in una linea cellulare tumorale sottoponendo la piattaforma a una serie di impulsi luminosi nel tempo»
BIOPIATTAFORMA FOTO-SENSIBILE PER LO STUDIO DEL COMPORTAMENTO CELLULARE
«La piattaforma foto-sensibile per colture cellulari che abbiamo progettato e realizzato ci permette di studiare l’effetto dello stimolo luminoso, trasdotto in stimolo elettrico, sull’attività cellulare – spiega Manuela Ciocca, attualmente assegnista di ricerca postdoc presso la Libera Università di Bolzano – Facoltà di Scienze e Tecnologia, precedentemente dottoranda presso il Dipartimento di Ingegneria Elettronica a “Tor Vergata”, dove ha iniziato il lavoro, e primo autore del lavoro pubblicato. «Abbiamo verificato che il processo di foto-trasduzione mediato dal dispositivo opto-elettronico permette di inibire del 50% la proliferazione di una linea cellulare di neuroblastoma» – aggiunge Ciocca.
Per “Tor Vergata”, oltre agli ingegneri elettronici hanno collaborato alla ricerca, per l’interfaccia biologica, Antonella Camaioni, professore associato di Istologia, e Serena Marcozzi, assegnista di ricerca postdoc, presso il Dipartimento di Biomedicina e Prevenzione
INTERFACCIA BIOCOMPATIBILE E SUE APPLICAZIONI IN BIOMEDICINA 
L’interfaccia di polimeri organici e sistemi biologici è una delle più nuove frontiere della bioelettronica e delle biotecnologie. «Abbiamo dimostrato la biocompatibilità della piattaforma e l’aumento del calcio intracellulare indotto dalla foto-trasduzione mediata dal polimero. Questo è un parametro molto importante poiché il calcio è coinvolto in molti processi cellulari come contrazione e proliferazione. Il dispositivo – prosegue la professoressa Camaioni – è dunque un nuovo punto di inizio per nuove possibilità di misure elettrofisiologiche». 
RALLENTAMENTO DELLA PROLIFERAZIONE CELLULARE
Abbiamo chiesto alla professoressa Camaioni a che cosa è dovuta la relazione tra il livello di calcio e la proliferazione delle cellule.  «Lo ione calcio è un messaggero intracellulare importante per le nostre cellule, all’interno delle quali tante proteine sono calcio-dipendenti, cioè svolgono la loro funzione solo in presenza di una certa concentrazione di ioni calcio. Consideriamo, ad esempio, che la contrazione della nostra muscolatura, quella scheletrica così come quella cardiaca e liscia, è possibile grazie alla presenza di proteine che legano il calcio. Ecco perché lo ione calcio viene normalmente tenuto “fuori” dalle cellule o “sequestrato” in compartimenti chiusi all’interno di esse e richiamato nel citoplasma solo “al bisogno”, potremmo dire “on demand”. Nella nostra sperimentazione – continua la biologa medica di “Tor Vergata” – il protocollo di illuminazione delle cellule di una linea tumorale di neuroblastoma umano ha determinato l’apertura di canali di membrana per lo ione calcio che, entrando nel citoplasma, si è andato a legare a delle proteine intracellulari, non sappiamo ancora quali, che hanno determinato un rallentamento della proliferazione cellulare, fenomeno molto interessante che vorremmo ulteriormente indagare»
APPLICAZIONI FUTURE: MEDICINA RIGENERATIVA E TERAPIA CELLULARE
I risultati della ricerca possono aprire nuove opportunità per tecniche non invasive di fotostimolazione/manipolazione e controllo delle cellule per applicazioni in biofotonica, biomedicina e terapie innovative per cure di tumori. La piattaforma bio-fotoelettrolitica e l’uso efficace della stimolazione della luce possono indicare nuove direzioni per il controllo, in vitro, del comportamento cellulare attraverso la luce per lo sviluppo di futuri nuovi strumenti non invasivi per l’applicazione in biorilevamento, medicina rigenerativa e terapia basata sulle cellule  e per il controllo e la terapia della progressione del cancro. «Recentemente, materiali elettronici organici e fotosensibili si sono mostrati molto promettenti, anche impiantati in vivo – afferma Brown –  per la trasduzione di stimoli luminosi in segnali di eccitazione per cellule e tessuti, tra cui retine degenerate. Tali materiali sono flessibili e possono essere depositati come comuni inchiostri». I ricercatori hanno scoperto che la stimolazione della luce aumenta di tre volte la concentrazione di ioni calcio all’interno delle cellule e che, al contempo, il calcio nelle cellule influisce sulla mancata proliferazione delle cellule stesse.
 

 

In allegato: 
Comunicato Stampa – BIOELETTRONICA E TERAPIE TUMORI – BIOPIATTAFORMA CONTROLLA LE CELLULE ATTRAVERSO LA LUCE
Selezione dei Media: 
science30.com 
quotidianosanità.it
insalutenews.it
salto.bz 

 

 

Open Day Master MIS, Ingegneria del Suono e dello Spettacolo

Open Day Master MIS, Ingegneria del Suono e dello Spettacolo

  

Lavorare come ingegneri del suono nel mondo dello Spettacolo, nella registrazione e post-produzione?  L’Open Day del Master  MIS  e del Corso di formazione, che si è tenuto sabato 19 novembre alle ore 15:00, presso l’Aula Convegni della Macroarea di Ingegneria, è stata l’occasione per conoscere alcune novità dell’ edizione 2022/2023 del Master di I livello in“Ingegneria del Suono e dello Spettacolo” e del Corso di formazione in “Tecniche dell’Ingegneria del Suono e dello Spettacolo” , istituiti presso il Dipartimento di Ingegneria Elettronica dell’Università di Roma “Tor Vergata”.
Entrambi i percorsi formativi, uno rivolto a laureati triennali, l’altro a diplomati, hanno l’obiettivo di creare profili professionali avanzati in grado di dare soluzione ai problemi che nascono nell’ambito dell’ingegneria del suono e del mondo dello spettacolo, sia da un punto di vista tecnico-scientifico sia artistico. Durante l’evento il professor Enrico Cosimi, esperto di sintetizzatori, ha tenuto una dimostrazione dal vivo, seguita dalla presentazione dei lavori finali dell’edizione 2021/2022 del Master.
La partecipazione aperta e gratuita.
Per informaizoni: mastersuono@uniroma2.it 
Visita il sito web:  Master in Ingegneria del Suono e dello Spettacolo 
Come raggiungere l’Aula Convegni  

30/11 – MIS – Master di Ingegneria del Suono Open Day. In presenza e on line!

Vieni a incontrare di persona (oppure comodamente on line) il MIS-Master di Ingegneria del Suono! Il 30 novembre 2021 dalle ore 15 alle ore 17  a Ingegneria “Tor Vergata”, in Aula Convegni (QUI come raggiungerci)

Due ore per ascoltare e parlare di “Synth and Acoustical Instruments” con il guru dei sintetizzatori Enrico Cosimi, con  il Mo. Maurizio Massarelli (Conservatorio Santa Cecilia) e con il prof. Marco Re (direttore del Master, dipartimento di Ingegneria Elettronica a “Tor Vergata”). Durante l’evento verrà ovviamente presentata l’offerta formativa della prossima edizione del MIS.

L’evento è contemporaneamente trasmesso on line su Microsoft Teams:
Codice: 1zavhxv
Link diretto

Dal 2003 il Master MIS, Master in Ingegneria del Suono e dello Spettacolo, istituito presso il Dipartimento di Ingegneria Elettronica dell’Università di Roma Tor Vergata, si propone di formare profili di personale avanzato in grado di dare soluzione ai problemi che nascono nell’ambito dell’ingegneria del suono e del mondo dello spettacolo sia da un punto di vista tecnico/scientifico che artistico.

L’offerta formativa è rivolta a tutti i laureati triennali in qualsiasi disciplina e, tramite il Corso di Formazione, anche ai soli diplomati.

MIS è anche su Youtube