3/06 – Public Lecture di Carlo Ratti (MIT): “Senseable Cities” e seminario per gli studenti

Carlo Ratti, architetto e ingegnere del MIT Massachusetts Institute of Technology dove dirige il MIT Senseable City Lab sarà Visiting Professor presso il DICII –  Dipartimento di Ingegneria civile e Ingegneria informatica e animerà per gli studenti dei corsi di laurea di Ingegneria Edile-Architettura e Ingegneria e Tecniche del costruire un seminario dal titolo SENSEABLE CITIES _THE EYES OF THE CITY, che sarà svolto in quattro giorni (20-21/05 e 3-4/06) per la durata complessiva di 20 ore e darà diritto a 2 crediti formativi.

Il tema, che riguarda in particolare l’elaborazione del progetto per una installazione alla Stazione Termini, sarà svolto in piccoli gruppi e permetterà a quanti frequenteranno il seminario di partecipare anche alla selezione per la Biennale di Architettura di Shenzhen di cui Carlo Ratti è Chief Curator per l’edizione 2019.

Il lavoro di ricerca del prof. Ratti ha l’obiettivo di esplorare l’impatto delle tecnologie digitali sullo spazio urbano e sulle comunità, per capire come potrebbe cambiare la nostra relazione con le città quando gli edifici risponderanno alla nostra presenza. In diversi interventi pubblici, Ratti ha spiegato che grazie agli ultimi progressi nei campi del deep learning e dell’imaging, si sta raggiungendo uno scenario senza precedenti: lo spazio architettonico sta acquisendo la capacità di ‘vedere’ e può potenzialmente riconoscerci e reagire autonomamente alla nostra presenza. Con quali conseguenze sulla vita urbana? Probabilmente un radicale cambiamento del nostro rapporto con l’architettura e lo spazio fisico.

Il prof. Carlo Ratti terrà inoltre, al di fuori dell’attività seminariale, una PUBLIC LECTURE lunedì 3 giugno 2019 alle ore 17.30 presso l’aula convegni della Macroarea di Ingegneria, a cui tutti sono invitati.

Sul sito http://seminario-carlo-ratti.jimdosite.com si trovano le info sul seminario, coordinato dal prof. Francesco Taormina, e le modalità di iscrizione per gli studenti.

LINK utili
http://senseable.mit.edu/
http://dusp.mit.edu/faculty/carlo-ratti
https://www.youtube.com/watch?time_continue=78&v=wC7cTHzx-IU

7-8/11 – corso introduttivo sul metodo “Density functional Tight Binding (DFTB)”

Mercoledi 7 e giovedi 8 novembre, dalle 14:00 alle 15:45 in Aula B9, il Prof Gotthard Seifert della TU-Technische Universität di Dresda terrà un corso introduttivo sul metodo “Density functional Tight Binding (DFTB)”. Il prof. Seifert e’ uno dei massimi esperti in DFTB e attualmente Visiting Professor presso il  Dipartimento di Ingegneria elettronica.

Per ulteriori informazioni, è possibile contattare il prof. Matthias Auf der Maur, Ph.D.
Dipartimento di Ingegneria Elettronica
Università degli Studi di Roma “Tor Vergata”
Via del Politecnico 1, 00133 Roma
Tel.: +39 06 7259 7781
Web : http://www.optolab.uniroma2.it

 

Tight-binding Density Functional Theory (DFTB) – an approximate Kohn-Sham DFT scheme
prof. Gotthard Seifert, Theoretische Chemie, Technische Universität Dresden

The DFTB method as an approximate KS-DFT scheme with an LCAO representation of the KS orbitals can be derived within a variational treatment of an approximate KS energy functional given by second-order perturbation with respect to charge density fluctuations around a properly chosen reference density. But it may also be related to cellular Wigner-Seitz methods and to the Harris functional. It is an approximate method, but it avoids any empirical parametrization by calculating the Hamiltonian and overlap matrices out of a DFT-LDA-derived local orbitals (atomic orbitals – AO’s) and a restriction to only two-centre integrals. Therefore, the method includes ab initio concepts in relating the Kohn-Sham orbitals of the atomic configuration to a minimal basis of the localized atomic valence orbitals of the atoms. Consistent with this approximation the Hamiltonian matrix elements can strictly be restricted to a two-centre representation.
Taking advantage of the compensation of the so called “double counting terms” and the nuclear repulsion energy in the DFT total energy expression, the energy may be approximated as a sum of the occupied KS single-particle energies and a repulsive energy, which can be obtained from DFT calculations in properly chosen reference systems.
This relates the method to common standard “tight-binding -TB” schemes, as they are well known in solid state physics. This approach defines the density-functional tight-binding (DFTB) method in its original (non-self-consistent) version. Its further development – e.g. including self-consistency – as well as the aspects of the computational realization and accuracy will be discussed. Finally, several examples for applications of the DFTB method will be shown.