La ricerca si racconta: LARM2, il laboratorio di Robotica a Ingegneria “Tor Vergata” dove si studiano soluzioni a basso costo

La ricerca si racconta: LARM2, il  laboratorio di Robotica a Ingegneria “Tor Vergata” dove si studiano soluzioni a basso costo

LARM2

di Pamela Pergolini

Il LARM2- Laboratorio di Robotica e Meccatronica, fondato nel 1990 all’Università di Cassino sotto la guida del professor Marco Ceccarelli, oggi ha sede presso il Dipartimento di Ingegneria Industriale dell’Università di Roma “Tor Vergata e si occupa di progettazione, analisi e sviluppo di robot e dispositivi intelligenti per migliorare la nostra vita quotidiana, dai robot di servizio a basso costo ai sensori medici. Il Laboratorio, diretto sempre dal prof. Ceccarelli, in questi 30 anni ha ospitato oltre cento studenti provenienti da tutto il mondo: Sud America, Asia, Africa, Nord America, Europa, Russia, come Messico,  USA, Kazakhstan, Cina, Giappone, oltre che dai paesi europei costruendo nel tempo una rete  internazionale, nell’ambito della quale avvengono continui  scambi di attività pratiche di laboratorio. Al momento collaborano alle attività di ricerca del LARM2, come studenti di dottorato, Jorge Araque, 32 anni, colombiano, Aleksandr Titov, 28 anni, di  russo, e Wenshuo Gao, cinese, 26 anni. Sia Jorge che Aleksandr lavorano su robot per aerospazio: Jorge ha partecipato attivamente alla ricerca su TORVEastro, un robot disegnato per assistere gli astronauti in operazioni di ispezione e manutenzione sulla stazione spaziale internazionale (ISS), Aleksandr sta progettando un manipolatore robotico (braccio e mano) per operazioni di “berthing” (recupero) di satelliti. Wenshuo invece sta lavorando alla progettazione di un torso per un robot umanoide, il LARMbot 2, su cui il professor Ceccarelli lavora da diversi anni e alla realizzazione del quale ha collaborato anche il prof. Matteo Russo, progettandone le gambe durante il suo dottorato a “Tor Vergata”, in parte svolto presso il Tokyo Institute of Technology. «Le materie che si possono studiare a ingegneria “Tor Vergata” e che si collegano alla ricerca che conduciamo nel laboratorio, – spiega il professor Ceccarelli – includono la cinematica dei robot, la dinamica multi-corpo, la progettazione di robot, i robot di servizio, sistemi robotici per applicazioni medicali medici e di riabilitazione e la storia dei meccanismi e della scienza delle macchine».
LARMbot 2, IL ROBOT UMANOIDE
Il progetto meccanico LARMbot 2 è un robot umanoide a basso costo orientato all’utente, caratterizzato da architetture parallele sia per il busto che per le gambe. Esiste già un prototipo, con i dettagli costruttivi dei suoi sottosistemi e le sue specifiche tecniche. Per caratterizzare le prestazioni del robot proposto, sono stati presentati risultati sperimentali sia per le operazioni di deambulazione che di sollevamento pesi. 
LA COSTRUZIONE DEL PROTOTIPO
LARMbot2 è stato concepito come un robot umanoide a basso costo, pertanto è stato progettato per essere prodotto con parti strutturali tramite stampa 3D, controllato da schede commerciali e azionato da servomotori commerciali e attuatori lineari. Il costo di tutti i componenti per il prototipo finale è inferiore a 2000 €.
LARMbot2 è caratterizzato da tre principali sottosistemi meccanici, ovvero locomozione, manipolazione e busto. Il sottosistema di locomozione è composto da due unità di gambe identiche. Ciascuna gamba è caratterizzata da una struttura ibrida con un meccanismo parallelo che collega l’anca alla caviglia, replicando l’architettura di una gamba, nella quale muscoli agonisti e antagonisti generano moto contraendosi e allungandosi in opposizione. Un secondo motore è posto sulla caviglia per raggiungere l’equilibrio durante le operazioni di deambulazione reagendo meglio ai disturbi sul piano frontale. «La camminata umana – racconta Ceccarelli – è stata studiata sviluppando un progetto meccanico per un robot bipede che cammina. I sistemi di deambulazione sono studiati in termini di cinematica, dinamica e controllo attraverso diversi sistemi meccanici. Vengono studiati gli aspetti meccanici e la programmazione della manipolazione delle robotizzazioni industriali con l’obiettivo di migliorare le applicazioni industriali esistenti e sviluppare nuove soluzioni di produzione. La meccanica delle manipolazioni robotizzate – conclude il professore – viene indagata anche con simulazioni sperimentali e sviluppo di opportuni dispositivi per end-effector e sistemi di test. Si studiano soluzioni a basso costo per applicazioni orientate all’utente». 
TORVEastro, IL ROBOT ASTRONAUTA  
È un robot a tre arti, che sono in grado di funzionare come braccia e gambe, costruito con la finalità  di aiutare gli astronauti nelle operazioni di manutenzione e supervisione delle infrastrutture esterne della stazione spaziale orbitale. Il prototipo sarà finalizzato entro la primavera del 2023 e verrà presentata una demo che ne illustrerà tutte le funzioni, sarà realizzato per resistere non solo alle alte temperature esterne alla stazione spaziale internazionale ma anche alla spazzatura spaziale che ad alta velocità rischia di perforare le tute degli astronauti. Il progetto vede la collaborazione tra il laboratorio di Robot Meccatronica di “Tor Vergata” e il laboratorio di Robotica e Intelligenza Artificiale del Dipartimento Tecnologie Energetiche e Fonti Rinnovabili dell’ENEA,  l’Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile. 
IL FUTURO DI TORVEastro 
Il prototipo servirà a progettare un robot astronauta per attività EVA (Extra-Vehicular-Activity) di servizio su stazioni orbitali per operazioni di manutenzione e monitoraggio esterno alle strutture della stazione orbitale. «La validazione di un prototipo dimostratore – ci dice il professor Ceccarelli – è uno dei risultati finali previsti dal progetto. Il progetto TORVEastro prevede attività di progettazione e sviluppo di soluzioni sia per ambienti nello spazio orbitale sia per sperimentazioni in laboratorio a gravità terrestre, al fine di concretizzare l’idea brevettuale già collaudata concettualmente con un piccolo prototipo». Oltre ai robot di “servizio”, nel quale rientrano sia l’umanoide che i robot spaziali, nel laboratorio di “Tor Vergata” vengono sviluppati robot, sensori e sistemi medici per diagnosi, assistenza e riabilitazione, attraverso l’uso di esoscheletri low-cost “stampabili in 3D a prezzi ridotti- spiega il professor Ceccarelli – estremamente leggeri per comfort se indossati e spesso attivati tirando o rilasciando cavi, e sistemi di monitoraggio, con recenti applicazioni sperimentali sulla respirazione tramite sensori indossabili”.
LA RIABILITAZIONE E LA DIAGNOSTICA MEDICA 
Vari sono i progetti in campo dei dispositivi medicali in fase di sviluppo e completamento come  il sistema L-CADEL per l’assistenza motoria del gomito con estensione ad una nuova struttura per la caviglia, e lo strumento RESPIRholter per il monitoraggio della respirazione con caratterizzazioni numeriche della biomeccanica utili alla diagnostica medica. 
LARM2: Laboratory of Robot Mechatronics
Sito web: https://larm2.ing.uniroma2.it/ 
Dipartimento di Ingegneria industriale Università di Roma “Tor Vergata” 
Direttore del Laboratorio LARM2: prof. Marco Ceccarelli,  http://orcid.org/0000-0001-9388-4391 
Specially Appointed Professor  at Intern. Research Frontiers Initiative of Tokyo Institute of Technology 

 

L’articolo è stato realizzato con la collaborazione di Federica Trisolino

 

Bioelettronica: controllare il comportamento delle cellule attraverso la luce, una ricerca tra l’ingegneria e la biologia medica

Bioelettronica: controllare il comportamento delle cellule attraverso la luce,  una ricerca tra l’ingegneria  e la biologia medica
  • Figura 1 -Piattaforma bio-fotoelettrolitica a polimeri semiconduttori. Schema dell'architettura aperta (a sinistra) e chiusa a sandwich (a destra)
  • Figura 2 - Analisi della dinamica del calcio cellulare. Le immagini vengono acquisite prima (basale) e dopo (indotta) 30 minuti di fotostimolazione. La fluorescenza verde è collegata ai livelli di calcio intracellulare e indicata come fluorescenza cellulare totale correlata (CTCF) ± SEM. Barra della scala 50 µm
  • Figura 3: Segnali bioelettrici registrati utilizzando la piattaforma bio-fotoelettrolitica chiusa a sandwich (a sinistra) e il patch-clamp (a destra) da cellule coltivate sul film sottile polimerico semiconduttore

 

di Pamela Pergolini

Misurazione e controllo della proliferazione di cellule viventi mediante impulsi luminosi: siamo nel campo della bioelettronica, a cavallo tra l’ingegneria e la biologia. L’ultima frontiera è quella di riuscire a controllare selettivamente attraverso la luce l’attività delle cellule e tessuti viventi per applicazioni terapeutiche e diagnostiche. Un team internazionale di ricercatori, guidato dall’Università degli Studi di Roma “Tor Vergata”, grazie al lavoro di ingegneri elettronici e biologi medici, ha realizzato una bio-piattaforma optoelettronica sia per la coltura delle cellule, sotto stimolazione luminosa (architettura aperta), sia per l’analisi dei segnali bioelettrici di cellule coltivate al suo interno (architettura chiusa), utilizzando un polimero organico sensibile alla luce. Il dispositivo, compatto e facile da utilizzare, permette di controllare, attraverso l’impiego di stimoli luminosi, la proliferazione di cellule tumorali e di registrare l’attività bioelettrica del sistema.
I risultati sono stati pubblicati nell’articolo “A Polymer Bio–Photoelectrolytic Platform for Electrical Signal Measurement and for Light Modulation of Ion Fluxes and Proliferation in a Neuroblastoma Cell Line” pubblicato sulla rivista internazionale open access “Advanced NanoBioMed Research”. Il team multidisciplinare è composto da Libera Università di Bolzano (Facoltà di Scienze e Tecnologie), Istituto di Struttura della Materia (CNR-ISM, Rome, Italy),  Cicci Research (Grosseto, Italy) ed Eurac Research (Istituto di Biomedicina, Bolzano), Penn State University (Pennsylvania, USA) ed è coordinato dall’Università  Roma “Tor Vergata”
Il Dipartimento di Ingegneria Elettronica ha collaborato alla realizzazione delle biopiattaforma mentre il Dipartimento di Biomedicina e Prevenzione si è occupato di studiare il comportamento cellulare riscontrando una relazione tra l’aumento di calcio intracellulare, in seguito alla stimolazione della luce, e il rallentamento della proliferazione delle cellule tumorali. I risultati della ricerca possono aprire nuove strade verso tecniche non invasive di controllo delle cellule per applicazioni in biofotonica e biomedicina e per terapie innovative nella cura dei tumori». Ne abbiamo parlato con i ricercatori. 
«Lo studio -spiega Thomas M. Brown, Dipartimento Ingegneria Elettronica di “Tor Vergata”, coordinatore del gruppo di ricerca – ha dimostrato che è possibile inibire la proliferazione cellulare del 50% in una linea cellulare tumorale sottoponendo la piattaforma a una serie di impulsi luminosi nel tempo»
BIOPIATTAFORMA FOTO-SENSIBILE PER LO STUDIO DEL COMPORTAMENTO CELLULARE
«La piattaforma foto-sensibile per colture cellulari che abbiamo progettato e realizzato ci permette di studiare l’effetto dello stimolo luminoso, trasdotto in stimolo elettrico, sull’attività cellulare – spiega Manuela Ciocca, attualmente assegnista di ricerca postdoc presso la Libera Università di Bolzano – Facoltà di Scienze e Tecnologia, precedentemente dottoranda presso il Dipartimento di Ingegneria Elettronica a “Tor Vergata”, dove ha iniziato il lavoro, e primo autore del lavoro pubblicato. «Abbiamo verificato che il processo di foto-trasduzione mediato dal dispositivo opto-elettronico permette di inibire del 50% la proliferazione di una linea cellulare di neuroblastoma» – aggiunge Ciocca.
Per “Tor Vergata”, oltre agli ingegneri elettronici hanno collaborato alla ricerca, per l’interfaccia biologica, Antonella Camaioni, professore associato di Istologia, e Serena Marcozzi, assegnista di ricerca postdoc, presso il Dipartimento di Biomedicina e Prevenzione
INTERFACCIA BIOCOMPATIBILE E SUE APPLICAZIONI IN BIOMEDICINA 
L’interfaccia di polimeri organici e sistemi biologici è una delle più nuove frontiere della bioelettronica e delle biotecnologie. «Abbiamo dimostrato la biocompatibilità della piattaforma e l’aumento del calcio intracellulare indotto dalla foto-trasduzione mediata dal polimero. Questo è un parametro molto importante poiché il calcio è coinvolto in molti processi cellulari come contrazione e proliferazione. Il dispositivo – prosegue la professoressa Camaioni – è dunque un nuovo punto di inizio per nuove possibilità di misure elettrofisiologiche». 
RALLENTAMENTO DELLA PROLIFERAZIONE CELLULARE
Abbiamo chiesto alla professoressa Camaioni a che cosa è dovuta la relazione tra il livello di calcio e la proliferazione delle cellule.  «Lo ione calcio è un messaggero intracellulare importante per le nostre cellule, all’interno delle quali tante proteine sono calcio-dipendenti, cioè svolgono la loro funzione solo in presenza di una certa concentrazione di ioni calcio. Consideriamo, ad esempio, che la contrazione della nostra muscolatura, quella scheletrica così come quella cardiaca e liscia, è possibile grazie alla presenza di proteine che legano il calcio. Ecco perché lo ione calcio viene normalmente tenuto “fuori” dalle cellule o “sequestrato” in compartimenti chiusi all’interno di esse e richiamato nel citoplasma solo “al bisogno”, potremmo dire “on demand”. Nella nostra sperimentazione – continua la biologa medica di “Tor Vergata” – il protocollo di illuminazione delle cellule di una linea tumorale di neuroblastoma umano ha determinato l’apertura di canali di membrana per lo ione calcio che, entrando nel citoplasma, si è andato a legare a delle proteine intracellulari, non sappiamo ancora quali, che hanno determinato un rallentamento della proliferazione cellulare, fenomeno molto interessante che vorremmo ulteriormente indagare»
APPLICAZIONI FUTURE: MEDICINA RIGENERATIVA E TERAPIA CELLULARE
I risultati della ricerca possono aprire nuove opportunità per tecniche non invasive di fotostimolazione/manipolazione e controllo delle cellule per applicazioni in biofotonica, biomedicina e terapie innovative per cure di tumori. La piattaforma bio-fotoelettrolitica e l’uso efficace della stimolazione della luce possono indicare nuove direzioni per il controllo, in vitro, del comportamento cellulare attraverso la luce per lo sviluppo di futuri nuovi strumenti non invasivi per l’applicazione in biorilevamento, medicina rigenerativa e terapia basata sulle cellule  e per il controllo e la terapia della progressione del cancro. «Recentemente, materiali elettronici organici e fotosensibili si sono mostrati molto promettenti, anche impiantati in vivo – afferma Brown –  per la trasduzione di stimoli luminosi in segnali di eccitazione per cellule e tessuti, tra cui retine degenerate. Tali materiali sono flessibili e possono essere depositati come comuni inchiostri». I ricercatori hanno scoperto che la stimolazione della luce aumenta di tre volte la concentrazione di ioni calcio all’interno delle cellule e che, al contempo, il calcio nelle cellule influisce sulla mancata proliferazione delle cellule stesse.
 

 

In allegato: 
Comunicato Stampa – BIOELETTRONICA E TERAPIE TUMORI – BIOPIATTAFORMA CONTROLLA LE CELLULE ATTRAVERSO LA LUCE
Selezione dei Media: 
science30.com 
quotidianosanità.it
insalutenews.it
salto.bz 

 

 

Didattica integrativa Fisica e Geometria: selezione per il conferimento di 5 assegni riservata ai dottorandi

Didattica integrativa Fisica e Geometria: selezione per il conferimento di 5 assegni  riservata ai dottorandi
Sulla base dei fondi assegnati dal MUR all’Ateneo di Roma “Tor Vergata”, è aperta una selezione per il conferimento di n. 5 assegni per attività di tutorato e didattico-integrative propedeutiche e di recupero che saranno svolte dagli studenti iscritti ai corsi di dottorato attivati presso i Dipartimenti di ingegneria e Scienze MM.FF.NN. dell’Ateneo.
Gli assegni sono così ripartiti:
n. 4 assegni, Area Fisica, pari ad € 1.600 al lordo delle imposte 8impegno di 80 ore totali9 per attività didattico-integrative di supporto ai corsi di Fisica Generale I attivi nella Macroarea di Ingegneria dell’Università di Roma Tor Vergata. Responsabile dell’attività: Ugo Zammit. Inviare la domanda ai seguenti  Indirizzi e-mail Indirizzi e-mail: zammit@uniroma2.it mauro.chinappi@uniroma2.it
n. 1 assegno, Area Geometria, pari a € 916,00 al lordo delle imposte (impegno di 45 ore totali), per attività didattico-integrative di supporto ai corsi di Geometria attivi nella Macroarea di Ingegneria dell’Università di Roma Tor Vergata. Responsabile dell’attività: Giulio Codogni. Inviare la domanda ai seguenti  Indirizzi e-mail: codogni@mat.uniroma2.it mauro.chinappi@uniroma2.it
Gli assegni sono incompatibili, relativamente all’anno accademico 2022/2023, con le seguenti tipologie di benefici:
-borse di studio Raeli;
-assegni per la collaborazione part-time;
-borse erogate con i Piani di Orientamento e Tutorato (ex artt. 5 e 6 D.M. 1047/2017), relativamente allo stesso anno accademico.
Gli assegni sono invece compatibili con:
– borse di studio LAZIO DISCO (D. lgl. 29 marzo 2012, n. 68, come da art. 3 c. 2 del D.M. 1047/2017).
La domanda di partecipazione al bando, che può essere presentata per una sola Area, deve essere inviata entro le ore 12.00 del 03/03/2023
Per maggiori informazioni vai al bando 
In allegato la domanda di partecipazione:
Domanda_bando tutorato_attività didattico ingrative_febbraio_2023 

Ing&Media – Cyber protesi diventano generatori di dati per la salute. L’intervista al prof. Marrocco – Il Messaggero

Ing&Media – Cyber protesi diventano generatori di dati per la salute. L’intervista al prof. Marrocco – Il Messaggero
L’ingegnere a capo del Laboratorio di elettromagnetismo pervasivo dell’Università di Roma “Tor Vergata”, il professor Gaetano Marrocco,  Dipartimento di Ingegneria civile e Informatica (DICII), intervistato da “Il Messaggero” ( 20.02.2023), racconta come funziona la tecnologia che sta alla base dei sensori Rfid e che permette l’identificazione a radio frequenza: un’etichetta elettromagnetica in cui l’informazione è concentrata in un piccolo chip, attivato dall’esterno da un’antenna. 
Le case biomedicali stanno iniziando a occuparsi di queste “cyber” protesi perché hanno proprietà digitali oltre che meccaniche o chimiche.  
Tecnologia – Le parole del futuro “Un microchip sarà il guardiano della nostra salute”, di Paolo Travisi, Il Messaggero, pag. 17, edizione nazionale, 20.02.2023
Leggi l’articolo on line 
#ingegneriamedica #elettromagnetismo #ingegneriainformatica

Ing&Media – Pallone spia: tecnologia antica ma efficace – TGR Leonardo

Ing&Media – Pallone spia: tecnologia antica ma efficace – TGR Leonardo
Lo scorso 4 febbraio un pallone spia, probabilmente cinese,  scoperto a fluttuare per i cieli americani, è stato abbattuto. I resti sono stati recuperati nell’Atlantico, saranno analizzati per capirne le finalità. Dopo il pallone spia, altri tre oggetti non identificati sono stati colpiti. 
Quella di un pallone che fluttua in cielo è una tecnologia antica ma efficace:  grazie a un principio fisico un corpo immerso in un fluido riceve una spinta verso l’alto. Intervista a Roberto Verzicco, professore di Fluidodinamica, Dipartimento di Ingegneria Industriale, a TGR Leonardo – Rai 3 del 14/02/2023.
Oggetti volanti non identificati, ma non sono di origine extraterrestre” Leonardo – Il TG della Scienza e dell’Ambiente Rai 3
Guarda il servizio
 Notizie correlate
Stanley Corrsin Award a Roberto Verzicco per gli studi sulla Fluidodinamica