Ricerca e soccorso in montagna, nuova tecnica di rilevamento grazie all’IoT 

Ricerca e soccorso in montagna, nuova tecnica di rilevamento grazie all’IoT 

Giulio Maria Bianco, 29 anni, romano, ricercatore all’Università Roma Tor Vergata, in tasca una laurea in Ingegneria medica, ha vinto il premio nazionale CNIT, il Consorzio Nazionale Interuniversitario per le Telecomunicazioni, per la migliore tesi di dottorato in elettromagnetismo con una ricerca su sistemi indossabili per il soccorso in emergenza in luoghi difficili da raggiungere.  

La ricerca si inserisce nelle attività del Pervasive Electromagnetics Lab dell’Ateneo Tor Vergata, che si occupa di studiare l’Elettromagnetismo in relazione all’intelligenza digitale distribuita negli oggetti. Il laboratorio si caratterizza per la sinergia tra l’Elettromagnetismo classico e la Scienza dei Materiali, l’Informatica, la Sensoristica, la Medicina, la Meccanica, l’Elettronica,  specialmente nel settore biomedico.

La ricerca di Giulio Maria Bianco, realizzata nel corso di dottorato in “Computer Science, Control and GeoInformation” presso la Macroarea di Ingegneria di Roma Tor Vergatasupervisore accademico prof. Gaetano Marrocco, supervisore industriale Dr. Abraham Mejia-Aguilar dell’istituto EURAC Research  di Bolzano –  si è conclusa con il lavoro di tesi dal titolo “Devices and methods for local- and remote-processing bodycentric internet of things systems” (a.a. 2021-2022) nel quale è stato sviluppato un nuovo sistema di soccorso basato su IoT – Internet of Things.

Con Internet of Things (IoT) si intende un insieme di dispositivi capaci di comunicare fra loro e prendere decisioni. Nell’IoT convergono molte discipline diverse (comunicazione wireless, identificazione, localizzazione in tempo reale, reti di sensori, calcolo pervasivo) che consentono a Internet di entrare nel mondo reale degli oggetti fisici che interagiscono con i servizi web. I sistemi IoT sono presenti in gran parte della vita quotidiana, dai sistemi di smaltimento rifiuti alla produzione industriale, dalla domotica ai trasporti urbani, quelli che includono anche il corpo umano prendono il nome di Bodycentric IoT o B-IoT. Abbiamo incontrato Giulio Maria per aiutarci a capire come funzionano i dispositivi che utilizzano il corpo umano per comunicare con altri dispositivi, quali sfide comportano e in quali campi possono essere applicati.

D. Partiamo proprio dal B-IoT, qual è la sua caratteristica principale?  

R. I sistemi B-IoT, che utilizzano sensori impiantati direttamente all’interno del corpo oppure su dispositivi indossabili, devono essere progettati per potere comunicare attraverso il corpo umano. Dal momento che i dispositivi indossabili sono sempre più diffusi, i B-IoT vengono sempre più utilizzati, ad esempio, in campo medico e nella sicurezza».

D. Per la vostra ricerca avete utilizzato una tecnologia esistente ma avete elaborato una nuova tecnica di rilevamento a lungo raggio, ci spieghi come e in quale contesto avete lavorato?

R. La tecnologia LoRa (Long Range), un protocollo di comunicazione a microonde, viene già utilizzata nel settore industriale per la sensoristica ambientale. Nel nostro lavoro di ricerca abbiamo pensato di utilizzarla in scenari di emergenza ed “estremi” – deserti, canyon, foreste – dove non funzionano altre tecnologie come, ad esempio, il GPS. In particolare LoRa è stata fatta indossare in operazioni di ricerca e salvataggio (SaR) in montagna. Nel caso specifico l’abbiamo adattata su diverse tipologie di persone e diverse aree del corpo umano in modo che potesse essere utilizzata e restare attiva per lungo tempo.

D. Che cosa è emerso dai vostri test?

R. Abbiamo dimostrato che per la progettazione di sistemi B-IoT è necessario un approccio numerico-statistico. In particolare abbiamo riscontrato che il diverso posizionamento dell’antenna indossata sul corpo e la postura di chi la indossa ha un effetto estremamente significativo. Dopo aver considerato le diverse variabili, abbiamo deciso di posizionare l’antenna sul casco. Confrontando il nostro sistema con l’ARVA, Apparecchio di Ricerca in Valanga, dispositivo di soccorso obbligatorio in ambienti montani, abbiamo osservato un rilevamento molto più efficace, quasi il doppio del raggio dell’area di localizzazione.    

D. Una volta ricevuto il segnale in che modo siete riusciti ad arrivare alla persona da soccorrere?

R. una volta applicato LoRa sul corpo umano, bisognava elaborare il segnale – che varia per la postura e le condizioni ambientali – in modo da poter stimare la posizione da raggiungere. Per questo abbiamo creato e sperimentato un apposito algoritmo che simula diverse possibili posizioni fino a trovare quella più probabile.

D. Quali gli sviluppi futuri di questa nuova tecnica di rilevamento?

R. Attualmente stiamo utilizzando droni per velocizzare l’operazione di ricerca e soccorso: i droni raggiungono direttamente l’area, dotati di telecamere, e portano strumenti di primo soccorso.

I risultati dell’attività di ricerca contenuti nella tesi “Devices and methods for local- and remote-processing bodycentric internet of things systems” di Giulio Maria Bianco sono stati pubblicati su riviste internazionali, tra cui IEEE Transactions on Signal and Information Processing over Networks, IEEE Antennas and Propagation Magazine e IEEE Transactions on Antennas and Propagation

LE PAROLE DELLA SCIENZA

ONDE ELETTROMAGNETICHE   

Un’onda corrisponde a uno spostamento di energia senza spostamento netto di materia. Vi sono le onde meccaniche, perturbazioni che si propagano con oscillazione di materia in cui l’energia ha bisogno di un supporto meccanico (mezzo) per essere trasmesse (esempi di onde meccaniche sono il suono e il terremoto) e le onde elettromagnetiche ossia perturbazione del campo magnetico ed elettrico che si propagano anche nello spazio vuoto. Lo spettro elettromagnetico  è l’insieme di tutte le possibili frequenze delle onde elettromagnetiche. Esempi di onde elettromagnetiche sono la luce e le trasmissioni radio. Altri tipi di onde elettromagnetiche sono le microonde, i raggi ultravioletti e i raggi X. Ciò che differenzia tra loro le diverse onde elettromagnetiche è la loro frequenza di oscillazione e la lunghezza. La lunghezza d’onda delle microonde, ad esempio, è compresa tra qualche decina di centimetri e il millimetro, la frequenza tra 300 MHz e 300 GHz. Le microonde sono utilizzate per le comunicazioni telefoniche a lunga distanza ma anche per i telefoni cellulari oltre che nei forni a microonde.

Auto d’epoca alimentate con carburante sintetico

Auto d’epoca alimentate con carburante sintetico

di Pamela Pergolini

Un’analisi di fattibilità tecnico-economica per la produzione di carburanti di sintesi, chiamati e-fuels o electrofuels, applicata a una nicchia di mercato del settore automotive, quella delle auto d’epoca a Roma: questa l’idea alla base della tesi di laurea triennale in “Ingegneria gestionale” discussa da Valerio Bombieri, 23 anni, romano,  – relatore il professore Giacomo Falcucci – nella seduta autunnale a.a.2022/2023. Nel suo lavoro, dal titolo “Analisi di fattibilità tecnico-economica per la produzione di e-fuels: il caso della città di Roma”, Valerio Bombieri mostra le stime effettuate per arrivare a dei valori utili per l’ipotetica produzione di combustibili sintetici e i relativi risparmi in termini di emissioni derivanti dall’utilizzo di tali carburanti nel settore delle auto d’epoca. 
D. Perché avete deciso di prendere come caso di studio proprio le auto d’epoca, è un settore che ti appassiona particolarmente?
R.
Il mondo delle auto storiche mi affascina, anche se in famiglia abbiamo soltanto  una Vespa d’epoca. A Roma il sindaco Roberto Gualtieri, per abbattere le emissioni inquinanti nella Capitale, ha vietato con un’ordinanza l’accesso alla fascia verde alle auto a benzina e diesel pre-euro 1, euro 1 ed euro 2, e ai diesel euro 3, estendendo indirettamente le limitazioni anche alle auto d’epoca. Volevamo dimostrare che un’idea di sostenibilità per questo comparto è possibile, considerando che il parco auto d’epoca italiano è una risorsa importante per il Paese dal momento che muove 104 miliardi di euro, pari al 5,4% del PIL nazionale.
D. La transizione ecologica dell’Unione europea con il “Green Deal” prevede due principali obiettivi: entro il 2030 la riduzione delle emissioni gas ad effetto serra del 55% ed entro il 2050 la neutralità climatica: emissioni nette zero. Per raggiungere tali obiettivi la decarbonizzazione dei trasporti è cruciale. La Ue ha intrapreso da tempo la strada dell’elettrificazione delle auto ma a marzo 2023 la Commissione europea e la Germania, il Paese che ha investito di più nei carburanti sintetici, hanno trovato un accordo sugli e-fuel…
R. Sì, l’intesa raggiunta consentirà di commercializzare gli autoveicoli con motori termici anche dopo il 2035 – quando scatterà il divieto di vendere auto a benzina e diesel – a condizione che siano alimentati con carburanti sinteticiin grado di garantire la neutralità climatica. Che cosa comporta la scelta degli e- fuels sul piano della produzione?
D. Che cosa comporta la scelta degli e- fuels sul piano della produzione?
R.
Gli e-fuel sono idrocarburi, come lo sono i combustibili fossili, con la differenza però che vengono realizzati sinteticamente, a partire da idrogeno e anidride carbonica. Sono a “emissione netta zero” di CO2, ma solo se l’energia elettrica usata nella loro produzione proviene da fonti rinnovabili, l’idrogeno in questo caso viene definito verde, e se la CO2 è quella già presente nell’aria. L’acqua, adattata per questo tipo di produzione, attraverso il processo di elettrolisi viene scissa in idrogeno e ossigeno, l’idrogeno viene poi combinato con il carbonio che viene prodotto, attraverso la gassificazione, dall’anidride carbonica derivata dalla biomassa. Gli e-fuel non vanno confusi con i bio-fuel, biocarburanti prodotti direttamente utilizzando il carbonio della biomasse, cioè da scarti di materia organica.
D. La produzione di e-fuels al momento risulta essere ancora molto costosa e limitata. Com’è la situazione in Europa? 
R.
Secondo il monitoraggio di e-Fuel alliance i carburanti sintetici vengono prodotti in Germania, Islanda, Spagna, Norvegia, Danimarca, Svezia. L’Italia invece ha puntato sulla produzione di biocarburanti. 
D. In quali casi, pensando in futuro di realizzare una completa mobilità verde, può essere utile l’impiego degli e-fuels?
R. Per decarbonizzare quei settori che per vari motivi dovranno utilizzare ancora per molto tempo motori a combustione interna, con l’e-fuel infatti l’infrastruttura dell’auto resta la stessa, non occorre cambiare il motore. Nel caso delle auto d’epoca questo è un aspetto essenziale perché non ne viene snaturato l’assetto. Inoltre, per il caso preso in analisi, l’investimento risulta conveniente anche dal punto di vista economico-ambientale perché permetterebbe al Comune di Roma di valorizzazione la FORSU.
D. FORSU sta per …?
R. Frazione Organica Rifiuti Urbani, l’umido per intenderci. Per produrre l’anidride carbonica necessaria nel nostro caso studio siamo partiti dalla biomassa della FORSU prodotta nel Comune di Roma.
D. È venuto il momento di fare un po’ di conti …quanto carburante sintetico occorrerebbe per far muovere l’intero parco auto d’epoca romano e quali i costi iniziali e operativi?
R. Per il nostro caso abbiamo considerato un consumo di 3 km/l per unità e 1000 km di percorrenza annua. Con tali dati la richiesta di carburante sintetico da produrre si aggira intorno ai 3.315.000 litri. Per quanto riguarda i costi, abbiamo ipotizzato che per realizzare un impianto in grado di soddisfare la domanda di elettrocarburante, in genere e-benzina o e-diesel, delle auto d’epoca presenti a Roma occorrerebbe un investimento iniziale di 17 milioni e 6 milioni di costi operativi l’anno. I risultati del nostro studio, anche nelle condizioni più pessimistiche e conservative, hanno dimostrato che il tempo di rientro dell’investimento per il Comune di Roma sarebbe al di sotto dei 9 anni, con un guadagno netto di vari milioni di euro a fine vita dell’impianto, oltre 20 anni.
D. Gli e-fuels a oggi sembrano avere un ruolo di nicchia nella mobilità del futuro se pensiamo al loro impiego per le automobili delle grandi città, ma potrebbero diventare una valida alternativa rispettosa del clima quando si tratta di aerei commerciali, camion che trasportano merci pesanti e navi portacontainer…
R. I carburanti sintetici non hanno probabilmente tutti i numeri per competere con le auto a batteria in un futuro a emissioni zero. Per le auto storiche rappresentano senz’altro la strada “green” come per le vetture di Formula 1, per poter sentire in futuro ancora il “rombo del motore”, azzerandone la carbon footprint.
 
 
 
 
 
 
 
 

Linux Day 2023, l’evento dedicato al software Libero e Open Source

Linux Day 2023, l’evento dedicato al software Libero e Open Source
Nel weekend di fine ottobre torna a Roma Linux Day,  la principale manifestazione italiana dedicata al software libero, alla cultura aperta e alla condivisione. Ad ospitare l’evento, completamente gratuito, è la Macroarea di Ingegneria Roma Tor Vergata, presso l’Edificio della Didattica. Per l’intera giornata di sabato 28 ottobre, dalle ore 9.00 alle 18.00, sarà possibile entrare a far parte del mondo e della filosofia GNU/Linux, sperimentandolo in prima persona, e approfondire il tema dell’edizione 2023 “Domotica open source”.
L’edizione romana, patrocinata dall’Università di Roma Tor Vergata e dal Comune di Roma, è organizzata dall’associazione studentesca Roma2LUG – Tor Vergata Linux Users Group grazie alla collaborazione dell’ente di ricerca CNIT (Consorzio Nazionale Interuniversitario per le Telecomunicazioni) e alcune aziende sponsor.
Prenota il tuo biglietto
Leggi il programma

 

Nanotecnologie: il futuro dei sensori a nanoporo per un cambio di passo nella ricerca in biologia e medicina

Blasco Morozzo Mauro Chinappi intervistati
Blasco Morozzo Mauro Chinappi intervistati

Le interviste in Laboratorio

Mauro Chinappi – Blasco Morozzo della Rocca

 

di Pamela Pergolini

I sensori a nanoporo sono alla base di dispositivi portatili – che in genere hanno l’aspetto di una chiavetta USB – per sequenziare il DNA e hanno permesso notevoli sviluppi in genomica. Ora la prossima sfida sarà utilizzare i sensori a nanoporo per l’analisi delle proteine, molto più complesse del DNA. Ed è verso questo obiettivo che punta la ricerca a cui hanno lavorato i due docenti dell’Università di Roma Tor Vergata,  Mauro Chinappi del Dipartimento di Ingegneria Industriale e Blasco Morozzo della Rocca del Dipartimento di Biologia, in collaborazione con il gruppo di ricerca guidato da Giovanni Maglia dell’Università di Groningen, in Olanda, nel Laboratorio Single-molecule biophysics.
Secondo la ricerca, pubblicata nell’ultimo numero di Nature Biotechnology 
con il titolo Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force”, sarebbe possibile utilizzare i sensori a nanoporo per analizzare anche le proteine. Ad oggi, tecnologie in grado di sequenziare in modo semplice singole proteine non sono disponibili. Una tecnologia per il sequenziamento diretto di proteine potrebbe portare a una rivoluzione nella ricerca in biologia e medicina.
Per le nostre Interviste in laboratorio abbiamo chiesto agli autori della ricerca, Blasco Morozzo della Rocca, docente di Bioinformatica, e Mauro Chinappi, docente di Fluidodinamica, di raccontarci in che modo hanno lavorato insieme per cercare di capire l’efficacia di approcci ingegneristici sulla cattura e il trasporto di proteine attraverso una tecnologia innovativa come quella dei biosensori a nanoporo.

D. Qual è l’aspetto principale che lega la Biologia molecolare a questo campo dell’ingegneria, la Fluidodinamica?
R.Mauro: Nelle bionanotecnologie il confine tra le discipline è molto sfumato. In questo progetto ci occupiamo del trasporto di liquidi attraverso canali, che è tradizionalmente un argomento di cui si occupa la fluidodinamica. Nello specifico, i canali di cui ci occupiamo in questo studio sono costituiti da proteine, dunque per la loro progettazione sono indispensabili conoscenze di biologia molecolare.
R. Blasco: Nonostante il nostro inquadramento formale, abbiamo entrambi una formazione multidisciplinare e questo ci permette di poter affrontare problemi complessi con visioni complementari. È una situazione che nella scienza contemporanea si verifica sempre più spesso … fortunatamente aggiungerei.
D. Parliamo dei nanopori: quali sono le caratteristiche di questi sensori altamente innovativi, come funzionano?
R. Mauro: Un singolo poro di pochi nanometri di diametro connette due camere in cui c’è acqua e sale. Un voltaggio applicato tra le due camere causa il passaggio di ioni da una camera all’altra. La corrente elettrica associata al passaggio di ioni può essere misurata facilmente con un amperometro. Quando una molecola è nel poro, il passaggio di ioni è ostacolato e quindi passa meno corrente elettrica nel sistema, un po’ come quando cade qualcosa in un lavandino e fluisce meno acqua attraverso lo scarico.

R. Blasco: Molecole diverse danno luogo a diversi segnali elettrici. Quindi, dalla variazione di corrente elettrica è possibile identificare la molecola che in quel momento sta occupando il poro. I sensori a nanoporo per l’analisi del DNA sono ormai una tecnologia consolidata: è molto semplice portare il DNA al poro perché è una molecola carica – e quindi è possibile guidarla con un campo elettrico – ed è anche relativamente semplice controllare il suo passaggio nel poro usando dei motori molecolari. Estendere questi approcci all’analisi di proteine è molto più complesso in quanto le proteine non hanno una carica omogenea. Una delle novità del nostro lavoro è aver mostrato come sia possibile indurre la cattura e il trasporto di proteine grazie ad un fenomeno fluidodinamico noto come elettroosmosi.
D. Che significa nella pratica “ingegnerizzare” un nanoporo biologico? Il nanoporo che avete utilizzato è stato costruito appositamente per questa ricerca?
R. Mauro: Ad oggi è possibile mutare la sequenza delle proteine per generare pori che espongano al loro interno regioni cariche positivamente o negativamente. Tuttavia, capire se e quali mutazioni sono utili per un certo obiettivo non è semplice. Le nostre simulazioni hanno permesso di comprendere in che modo le modifiche della superficie interna del poro alterino il flusso di acqua (l’elettroosmosi). Ulteriori simulazioni hanno poi permesso di quantificare le forze agenti sulla proteina all’interno del poro mostrando, ad esempio, che la forza dovuta al flusso elettroosmotico può essere così intensa da permettere di catturare e trasportare proteine anche quando la forza elettroforetica è orientata in direzione opposta.

R. Blasco: Uno dei vantaggi di usare pori biologici è che la loro struttura è determinata dagli aminoacidi che la compongono, i quali a loro volta sono codificati nel DNA che si usa per la loro produzione. In questo modo è possibile creare molte combinazioni diverse e testare il loro comportamento o efficacia rispetto a una funzione che si vuole implementare. I nostri collaboratori in Olanda, in particolare Adina Sauciuc, ne hanno prodotti oltre una decina, per cercare di capire quale andasse meglio. Incrociando i dati dei modelli, degli esperimenti e delle simulazioni abbiamo identificato le combinazioni migliori per il nostro scopo.

 

D. Una domanda di biologia: qual è l’utilità di poter identificare e sequenziare proteine?
R. Blasco: Le proteine sono tra gli attori principali dei fenomeni biologici, sono le operaie, le esecutrici delle più svariate funzioni, da quelle più semplici e strutturali a quelle complesse come la trasmissione di segnali nervosi o la conversione della luce in energia chimica, tanto per fare qualche esempio. Anche se spesso si dà molta importanza al DNA e ai geni (giustamente), l’informazione che essi contengono viene “messa in pratica” dalle proteine. Queste poi subiscono altre modifiche durante la loro vita, maturano con delle modificazioni chimiche, che sono spesso associate a fenomeni di regolazione e anche all’insorgenza di patologie. Potere identificare e sequenziare le proteine, con strumenti rapidi ed efficaci, avrebbe implicazioni di vasta portata anche per la diagnosi di malattie e la cura dei pazienti.
D. Questa innovativa tecnologia ha permesso di ottenere sviluppi nel sequenziamento del DNA a partire dagli anni ‘10 del 2000, quali nuove prospettive alla ricerca può aprire questo vostro studio?
R. Blasco: Ad oggi, tecnologie in grado di sequenziare direttamente singole proteine non sono disponibili. Esistono approcci che forniscono informazioni sul proteoma, ma richiedono dei passaggi complessi. In alcune tecniche le proteine vanno tagliuzzate e ricomposte, per altre servono complessi cicli di reazioni o macchinari molto sofisticati e costosi. Una tecnologia per sequenziamento diretto di proteine potrebbe portare a un cambio di passo nella ricerca in biologia e medicina forse paragonabile a quel che è accaduto qualche decade fa con la disponibilità di sequenziatori di DNA a basso costo, i cui riflessi e ricadute si stanno raccogliendo anche ora.
R. Mauro: Il nostro studio è un tassello che potrebbe aiutare a risolvere uno dei problemi principali dei sensori a nanoporo per le proteine: la possibilità di controllare il trasporto delle proteine attraverso il poro. Fino a qualche anno fa, solo pochi gruppi di ricerca studiavano la possibilità di usare approcci nanofluidici come l’elettroosmosi per controllare il trasporto di proteine. Ora vari gruppi si stanno muovendo in questa direzione e, il nostro studio, in qualche forma, suggerisce che questa sia una direzione promettente.
D. In quali altri campi possono essere utilizzati i sensori a nanoporo?
Blasco: Ovunque siano coinvolti attori biologici! Oltre alla medicina, la microbiologia e l’ambiente mi vengono in mente tutti quei processi industriali che coinvolgono organismi, come la produzione di yogurt, vino e birra.

 

 

LE PAROLE DELLA SCIENZA
Le parole del giorno
ELETTROOSMOSI: trasporto di acqua indotto da un campo elettrico esterno, da qui il nome elettroosmosi, dal greco ὠσμός “spinta, impulso”. Immaginiamo, ad esempio, un canale sulle cui pareti ci siano, cariche fisse negative e supponiamo che in questo canale ci sia una soluzione elettrolitica (acqua e sale). Queste cariche fisse sulle pareti del canale attireranno gli ioni positivi presenti in soluzione. A questo punto avremo all’interno del canale una prevalenza di ioni positivi. Sotto l’azione di un campo elettrico esterno, questi inizieranno a muoversi e trascineranno l’acqua.
ELETTROFORESI: movimento di una particella o molecola carica indotto da un campo elettrico esterno. È un fenomeno che si usa molto, ad esempio, nelle analisi biochimiche per muovere e separare molecole (proteine, DNA) per poi identificarle.

 

Sezione trasversale del nanoporo (in bianco), attraversato dal peptide (in azzurro, con gli aminoacidi carichi in rosso per i negativi e in blu per i positivi). Il poro attraversa una membrana lipidica (strato grigio) che divide il sistema in due compartimenti, immersi in acqua e sale (sfondo viola e grigio). Se tra i due lati applichiamo una differenza di potenziale si generano forze elettroforetiche (EF) e flussi elettroosmotici (EOF). Nel sistema raffigurato i EOF riescono a soverchiare le EF permettendo la traslocazione della proteina e la sua analisi.
 

ASIASAFE: il progetto Erasmus+ per la sicurezza stradale in Asia

ASIASAFE: il progetto Erasmus+ per la sicurezza stradale in Asia
La Macroarea di Ingegneria ha ospitato i partner del progetto ASIASAFE (Modernisation, Development and Capacity Building of Master Curriculum in Traffic Safety in Asian Universities), arrivati in Italia per partecipare al workshop Erasmus + AsiaSafe Consortium e provenienti da sei università asiatiche (tra cui Indonesia, Malesia e Vietnam).
Il progetto, incentrato sul tema della sicurezza della rete stradale in Asia come problema sanitario, sociale ed economico, è finanziato dalla Commissione Europea all’interno del programma Erasmus+, Capacity Building in Higher Education. Responsabile scientifico del progetto per Tor Vergata è il prof. Antonio Comi, Ingegneria dei trasporti, Pianificazione, progettazione e gestione dei sistemi di trasporto, che ha aperto i lavori, presso l’Aula Convegni di Ingegneria. All’inaugurazione sono intervenuti il rettore dell’Università Roma Tor Vergata prof. Nathan Levialdi Ghiron, il coordinatore della Macroarea di Ingegneria prof. Ugo Zammit, la delegata  all’Internazionalizzazione prof.ssa Bianca Sulpasso, il coordinatore del progetto prof. Ghazwan Al-Haji.  
I paesi membri dell’Associazione delle Nazioni dell’Asia Sud-Orientale (ASEAN), di cui fanno parte i tre paesi partner del progetto, Indonesia, Malesia e Vietnam (ID/MY/VN), possiedono meno del 3% dei veicoli mondiali ma registrano circa il 12% delle morti stradali nel mondo. Questo numero rimane elevato rispetto a paesi con livelli di motorizzazione molto più elevati, come Italia, Portogallo e Svezia, partner dell’UE. L’obiettivo generale del progetto è quello di sviluppare, adattare e implementare un curriculum di master avanzato e moderno, sia diploma che un programma di master completo, nel campo della sicurezza stradale nell’ambito di sforzi congiunti tra l’UE e le università partner di Indonesia, Malaysia and Vietnam, secondo standard e migliori pratiche di sicurezza stradale dell’Unione europea e standard di accreditamento nazionali. 
Workshop Erasmus + AsiaSafe Consortium – Il programma
Notizie correlate
“Tor Vergata” International: ecco perché investire nell’Internazionalizzazione paga. Ne parliamo con la Delegata Bianca Sulpasso 

ASIASAFE – Tor Vergata