Materiali polimerici altamente innovativi per realizzare parti e componenti di satelliti. Il futuro dell’aerospazio passa per il Lazio grazie al progetto Scamp, acronimo di “Smart Components mediante Additive Manufacturing Polimeric”, cofinanziato dalla Regione Lazio con fondi strutturali europei. All’iniziativa, con capofila Thales Alenia Space Italia, hanno partecipato aziende innovative locali – Se.Te.L. Servizi Tecnici Logistici e Hb-Technology – e due importanti enti di ricerca: l’Università di Roma Tor Vergata e il Cnr.
Gli scienziati del centro CHOSE dell’Università di Roma Tor Vergata insieme ai partner di NUST MISIS (Russia) e CNR (Italia) hanno scoperto che una quantità microscopica di carburo di titanio bidimensionale, chiamata Mxene, migliora significativamente la raccolta di cariche elettriche in una cella solare a perovskite, aumentandone l’efficienza finale oltre il 20%. I risultati di questa ricerca sono stati pubblicati sulla rivista scientifica Nature Materials.
La cella solare a film sottile di perovskite è una nuova promettente tecnologia fotovoltaica, che viene attivamente sviluppata in tutto il mondo come alternativa a quelle già commercializzate. Tra i tanti vantaggi, i semplici processi di produzione a basso costo: le celle solari a perovskite possono infatti essere realizzate con speciali stampanti a getto d’inchiostro, senza l’uso di processi ad alta temperatura o di alto vuoto, comunemente usati per le tradizionali celle al silicio. Un ulteriore vantaggio è la possibilità di fabbricazione su substrati di plastica flessibili, come il polietilentereftalato comune (PET). Questo permette l’integrazione del fotovoltaico a perovskite negli edifici su pareti e / o in diverse altre posizioni, come facciate e finestre curve.
Lo sforzo congiunto della comunità scientifica internazionale si focalizza nel trovare la migliore strategia per aumentare sia l’efficienza che la stabilità di questa nuova tecnologia fotovoltaica. La maggior parte delle soluzioni proposte finora riguardano l’ottimizzazione della composizione chimica della perovskite, la stabilizzazione delle interfacce dei dispositivi e l’integrazione di nuovi nanomateriali.
Un team internazionale di scienziati, guidati dal prof. Aldo Di Carlo, provenienti dal Center for Hybrid and Organic Solar Energy (CHOSE) dell’Università di Roma Tor Vergata, dal NUST MISIS, Russia e dal CNR, hanno proposto un approccio originale per progettare celle solari a perovskite altamente efficienti, basato sul drogaggio dello strato foto-attivo di perovskite con composti bidimensionali in carburo di titanio, chiamati MXeni.
“Abbiamo scoperto che gli MXenes, grazie alla loro struttura bidimensionale unica nel suo genere, possono essere utilizzati per ottimizzare le proprietà superficiali della perovskite, consentendo una nuova strategia di ottimizzazione per queste celle solari di III generazione”, commenta il professor Di Carlo.
La cella solare a film sottile di perovskite ha una struttura a sandwich, in cui le cariche si spostano da uno strato all’altro attraverso le interfacce e si raccolgono selettivamente agli elettrodi. In questo modo la luce solare viene convertita in corrente elettrica. In termini semplici, l’incorporazione degli MXeni all’interno della struttura, migliora il trasporto degli elettroni dal film assorbitore agli elettrodi, riducendo drasticamente le perdite eventualmente indotte da barriere energetiche interne.
“Per migliorare l’efficienza delle celle solari a perovskite, dobbiamo ottimizzare la struttura del dispositivo, in particolare le interfacce e le proprietà di trasporto di carica di ogni singolo strato.” – Antonio Agresti, uno degli autori, ricercatore presso Università di Roma Tor Vergata – “A questo scopo, insieme ai nostri colleghi moscoviti, abbiamo eseguito una serie di esperimenti incorporando una microscopica quantità di MXeni nella cella solare a perovskite. Di conseguenza, abbiamo ottenuto un aumento dell’efficienza dei dispositivi di oltre il 25% rispetto ai prototipi originali.”
Gli MXeni sono stati introdotti sequenzialmente nei diversi strati della cella solare di perovskite: nello strato foto-assorbente, in quello di trasporto di elettroni a base di biossido di titanio e all’interfaccia tra di essi. Dopo aver analizzato le prestazioni fotovoltaiche dei dispositivi, si è scoperto che la configurazione più efficiente è quella in cui gli MXeni sono introdotti in tutti gli strati, inclusa la loro interfaccia. I risultati sperimentali sono confermati da un’adeguata modellizzazione delle strutture ottenute.
L’unicità di questo lavoro consiste nel descrivere, per la prima volta, non solo una serie di esperimenti e i risultati ottenuti, ma anche nel fornire una chiara spiegazione dal punto di vista fisico-chimico dei meccanismi che si verificano nella cella solare a perovskite modificata con gli MXeni.
“La possibilità di utilizzare in modo semplice questi nuovi materiali bidimensionali, modificando le proprietà elettro-ottiche degli strati che formano un dispositivo elettronico in base a specifiche esigenze di progettazione,” – Sara Pescetelli, uno degli autori dell’Università di Roma Tor Vergata – “può ispirare architetture innovative per celle solari altamente efficienti o per altri dispositivi come LED e rilevatori basati sulla perovskite. ”
Attualmente, il team sta cercando di stabilizzare il dispositivo ottenuto e di aumentarne l’efficienza.
Lazio Innova, società per l’innovazione della Regione Lazio, in collaborazione con CNR-IBAF e AresCosmo, lancia il Contest “Tecnologie per il controllo ambientale biorigenerativo” finalizzato a selezionare idee, soluzioni, proposte innovative e distruptive che migliorino la vita e l’impatto sul pianeta in cui viviamo e su quelli in cui vivremo.
Per la sfida lanciata, nessun limite alla fantasia, alla tecnologia e alla sperimentazione, solo una serie di informazioni utili da tenere in considerazione. In particolare:
1) Le soluzioni tecnologiche prospettate per controllo ambientale biorigenerativo dovranno incidere sui seguenti sottosistemi di riferimento: Temperatura, Umidità relativa, Concentrazione di CO2, Inquinanti, Illuminazione, Fertilizzazione, Patogeni;
2) Le soluzioni tecnologiche prospettate dovranno prioritariamente riferirsi ad uno o più degli ambienti e condizioni come Agricoltura e Agroindustria, Ambienti di lavoro, Ambienti di vita.
Possono partecipare: PMI, Startup, Studenti di scuola secondaria e studenti universitari, Sviluppatori, Professionisti, Consulenti.
Il Contest si inserisce all’interno del Workshop Internazionale Joint AgroSpace – MELiSSA “Current and future ways to Closed Life Support Systems”, promosso da AgroSpace e da ESA e realizzato in collaborazione con la Regione Lazio, attraverso Lazio Innova.
Il Workshop si articola in tre giornate di lavoro, dal 16 al 18 maggio 2018, presso il CNR di Roma e vede la partecipazione delle principali istituzioni italiane ed europee che si occupano di AgroSpazio e la presenza di Università, Istituzioni di ricerca e Industrie nazionali ed internazionali.
La dead line per partecipare è il 24 aprile 2018.
Le soluzioni proposte saranno valutate da una Commissione, composta da addetti ai lavori e rappresentanti di Lazio Innova, che selezionerà le migliori tre soluzioni a proprio insindacabile giudizio. I tre team selezionati saranno invitati a tenere un pitch di 3 minuti, in lingua inglese, in una delle tre giornate di lavoro, davanti al Comitato Scientifico e alla platea internazionale del Workshop. Inoltre, fruiranno di un periodo di pre-incubazione presso l’ESA-BIC Lazio (Spazio Attivo Roma Tecnopolo), nel corso del quale beneficeranno di un’attività di tutoraggio con l’obiettivo di arrivare a presentare domanda di incubazione all’interno del programma ESA-BIC ed il relativo incentivo economico.
QUI IL BANDO, LE ISTRUZIONI E IL FORM DI PARTECIPAZIONE
L’ENEA e l’Università degli Studi di Roma “Tor Vergata” organizzano il convegno “Biotecnologie per lo Spazio”, il 28 settembre 2017, ore 9.00, presso l’Aula Convegni – Edificio della Didattica – Macroarea di Ingegneria.
Secondo gli organizzatori, la presenza umana a lungo termine nello spazio profondo e negli avamposti su Marte è un obiettivo realistico di diversi progetti spaziali sia pubblici che privati. Sempre che gli astronauti, grazie a nuove biotecnologie, possano essere indipendenti dalla Terra.
Si parlerà di nano-materiali, nutraceutici, sviluppo di sistemi biologici di supporto alla vita, fino alla biologia sintetica.
Il prof. Marco Gambini, direttore del Dipartimento di Ingegneria Industriale di Ingegneria Tor Vergata, porterà i saluti istituzionali. Seguirà poi, tra gli altri, l’intervento dei ricercatori Denise Bellisario, Fabrizio Quadrini e Loredana Santo del DIpartimento di Ingegneria industriale sul tema delle “Soluzioni tecnologiche per superfici antibatteriche in ambiente spaziale”.
Il convegno è organizzato nell’ambito degli eventi per la Notte Europea dei Ricercatori. Per partecipare è necessario iscriversi mandando un’e-mail al seguente indirizzo: biotecnologie@enea.it