Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Il gruppo di Fisica della Materia del DICII verso il superconduttore bidimensionale

di Sabina Simeone @sabinasimeone
superconduttore
Le indagini hanno evidenziato in maniera chiara che la superconduttività è dovuta all’introduzione di atomi di ossigeno in un singolo piano atomico all’interfaccia tra i due ossidi (vedi cerchi bianchi in figura)

Il gruppo di Fisica della Materia del DICII – Dipartimento di Ingegneria Civile e Ingegneria Informatica dell’Università di Roma Tor Vergata realizza un’eterostruttura, un materiale artificiale non esistente in natura, che mostra proprietà superconduttive in pochi strati atomci. Ciò potrebbe consentirne l’applicazione nella nano-elettronica, scienza di nuovissima generazione.

Sotto opportune condizioni, già poche celle di materiale garantiscono che al di sotto di una determinata temperatura (detta tempertura critica) abbia luogo la superconduttività, cioè il trasporto di corrente elettrica senza resistenza: a questo importantissimo risultato, pubblicato sulla prestigiosa rivista Physical Review Letters, sono arrivati gli scienziati di Fisica della Materia del DICII dell’Università di Roma Tor Vergata. Questa nuova eterostruttura, ideata e realizzata dagli scienziati italiani, è stata studiata dettagliatamente con tecniche avanzate di microscopia elettronica presso l’Oak Ridge National Laboratory, in Tennessee, USA. Le indagini hanno evidenziato in maniera chiara che la superconduttività è dovuta all’introduzione di atomi di ossigeno in un singolo piano atomico all’interfaccia tra i due ossidi. E in più è emersa un’altra importante caratteristica: la superconduttività è confinata in un sottile strato (una/due celle unitarie) all’interfaccia tra i due ossidi isolanti. Quindi si può parlare di superconduttività quasi-bidimensionale.

“Lo studio delle proprietà della eterostruttura, composta da un ossido di rame e un ossido di titanio, può contribuire alla comprensione del meccanismo microscopico alla base della superconduttività, il che potrebbe consentire di aumentare la temperatura critica, che nel nostro materiale è attorno ai 40 Kelvin (circa -230 gradi Celsius)” afferma Daniele Di Castro, ricercatore del gruppo di Fisica della Materia del DICII. “Inoltre, essendo la superconduttività confinata in un paio di celle unitarie – e per cella unitaria si intende l’unità minima del reticolo cristallino del materiale -, essa risponde all’esigenza di andare verso materiali superconduttori bi-dimensionali, tali da poter essere utilizzati in dispositivi elettronici avanzati”. E secondo gli studiosi è importante sottolineare il valore della temperatura critica a cui si è arrivati: i 40 Kelvin sono infatti assai più facilmente raggiungibili in laboratorio, rispetto ai pochi decimi di Kelvin a cui di solito si riscontrano le proprietà superconduttive in altre eterostrutture di ossidi.

Lo studio è stato pubblicato sulla rivista Physical Review Letters (“High Tc superconductivity at the interface between the CaCuO2 and SrTiO3 insulating oxides”, D. Di Castro, C. Cantoni, F. Ridolfi, C. Aruta, A. Tebano, N. Yang, and G. Balestrino, Phys. Rev. Lett. 115, 147001 (2015)).