Linux Day 2023, l’evento dedicato al software Libero e Open Source

Linux Day 2023, l’evento dedicato al software Libero e Open Source
Nel weekend di fine ottobre torna a Roma Linux Day,  la principale manifestazione italiana dedicata al software libero, alla cultura aperta e alla condivisione. Ad ospitare l’evento, completamente gratuito, è la Macroarea di Ingegneria Roma Tor Vergata, presso l’Edificio della Didattica. Per l’intera giornata di sabato 28 ottobre, dalle ore 9.00 alle 18.00, sarà possibile entrare a far parte del mondo e della filosofia GNU/Linux, sperimentandolo in prima persona, e approfondire il tema dell’edizione 2023 “Domotica open source”.
L’edizione romana, patrocinata dall’Università di Roma Tor Vergata e dal Comune di Roma, è organizzata dall’associazione studentesca Roma2LUG – Tor Vergata Linux Users Group grazie alla collaborazione dell’ente di ricerca CNIT (Consorzio Nazionale Interuniversitario per le Telecomunicazioni) e alcune aziende sponsor.
Prenota il tuo biglietto
Leggi il programma

 

Nanotecnologie: il futuro dei sensori a nanoporo per un cambio di passo nella ricerca in biologia e medicina

Blasco Morozzo Mauro Chinappi intervistati
Blasco Morozzo Mauro Chinappi intervistati

Le interviste in Laboratorio

Mauro Chinappi – Blasco Morozzo della Rocca

 

di Pamela Pergolini

I sensori a nanoporo sono alla base di dispositivi portatili – che in genere hanno l’aspetto di una chiavetta USB – per sequenziare il DNA e hanno permesso notevoli sviluppi in genomica. Ora la prossima sfida sarà utilizzare i sensori a nanoporo per l’analisi delle proteine, molto più complesse del DNA. Ed è verso questo obiettivo che punta la ricerca a cui hanno lavorato i due docenti dell’Università di Roma Tor Vergata,  Mauro Chinappi del Dipartimento di Ingegneria Industriale e Blasco Morozzo della Rocca del Dipartimento di Biologia, in collaborazione con il gruppo di ricerca guidato da Giovanni Maglia dell’Università di Groningen, in Olanda, nel Laboratorio Single-molecule biophysics.
Secondo la ricerca, pubblicata nell’ultimo numero di Nature Biotechnology 
con il titolo Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force”, sarebbe possibile utilizzare i sensori a nanoporo per analizzare anche le proteine. Ad oggi, tecnologie in grado di sequenziare in modo semplice singole proteine non sono disponibili. Una tecnologia per il sequenziamento diretto di proteine potrebbe portare a una rivoluzione nella ricerca in biologia e medicina.
Per le nostre Interviste in laboratorio abbiamo chiesto agli autori della ricerca, Blasco Morozzo della Rocca, docente di Bioinformatica, e Mauro Chinappi, docente di Fluidodinamica, di raccontarci in che modo hanno lavorato insieme per cercare di capire l’efficacia di approcci ingegneristici sulla cattura e il trasporto di proteine attraverso una tecnologia innovativa come quella dei biosensori a nanoporo.

D. Qual è l’aspetto principale che lega la Biologia molecolare a questo campo dell’ingegneria, la Fluidodinamica?
R.Mauro: Nelle bionanotecnologie il confine tra le discipline è molto sfumato. In questo progetto ci occupiamo del trasporto di liquidi attraverso canali, che è tradizionalmente un argomento di cui si occupa la fluidodinamica. Nello specifico, i canali di cui ci occupiamo in questo studio sono costituiti da proteine, dunque per la loro progettazione sono indispensabili conoscenze di biologia molecolare.
R. Blasco: Nonostante il nostro inquadramento formale, abbiamo entrambi una formazione multidisciplinare e questo ci permette di poter affrontare problemi complessi con visioni complementari. È una situazione che nella scienza contemporanea si verifica sempre più spesso … fortunatamente aggiungerei.
D. Parliamo dei nanopori: quali sono le caratteristiche di questi sensori altamente innovativi, come funzionano?
R. Mauro: Un singolo poro di pochi nanometri di diametro connette due camere in cui c’è acqua e sale. Un voltaggio applicato tra le due camere causa il passaggio di ioni da una camera all’altra. La corrente elettrica associata al passaggio di ioni può essere misurata facilmente con un amperometro. Quando una molecola è nel poro, il passaggio di ioni è ostacolato e quindi passa meno corrente elettrica nel sistema, un po’ come quando cade qualcosa in un lavandino e fluisce meno acqua attraverso lo scarico.

R. Blasco: Molecole diverse danno luogo a diversi segnali elettrici. Quindi, dalla variazione di corrente elettrica è possibile identificare la molecola che in quel momento sta occupando il poro. I sensori a nanoporo per l’analisi del DNA sono ormai una tecnologia consolidata: è molto semplice portare il DNA al poro perché è una molecola carica – e quindi è possibile guidarla con un campo elettrico – ed è anche relativamente semplice controllare il suo passaggio nel poro usando dei motori molecolari. Estendere questi approcci all’analisi di proteine è molto più complesso in quanto le proteine non hanno una carica omogenea. Una delle novità del nostro lavoro è aver mostrato come sia possibile indurre la cattura e il trasporto di proteine grazie ad un fenomeno fluidodinamico noto come elettroosmosi.
D. Che significa nella pratica “ingegnerizzare” un nanoporo biologico? Il nanoporo che avete utilizzato è stato costruito appositamente per questa ricerca?
R. Mauro: Ad oggi è possibile mutare la sequenza delle proteine per generare pori che espongano al loro interno regioni cariche positivamente o negativamente. Tuttavia, capire se e quali mutazioni sono utili per un certo obiettivo non è semplice. Le nostre simulazioni hanno permesso di comprendere in che modo le modifiche della superficie interna del poro alterino il flusso di acqua (l’elettroosmosi). Ulteriori simulazioni hanno poi permesso di quantificare le forze agenti sulla proteina all’interno del poro mostrando, ad esempio, che la forza dovuta al flusso elettroosmotico può essere così intensa da permettere di catturare e trasportare proteine anche quando la forza elettroforetica è orientata in direzione opposta.

R. Blasco: Uno dei vantaggi di usare pori biologici è che la loro struttura è determinata dagli aminoacidi che la compongono, i quali a loro volta sono codificati nel DNA che si usa per la loro produzione. In questo modo è possibile creare molte combinazioni diverse e testare il loro comportamento o efficacia rispetto a una funzione che si vuole implementare. I nostri collaboratori in Olanda, in particolare Adina Sauciuc, ne hanno prodotti oltre una decina, per cercare di capire quale andasse meglio. Incrociando i dati dei modelli, degli esperimenti e delle simulazioni abbiamo identificato le combinazioni migliori per il nostro scopo.

 

D. Una domanda di biologia: qual è l’utilità di poter identificare e sequenziare proteine?
R. Blasco: Le proteine sono tra gli attori principali dei fenomeni biologici, sono le operaie, le esecutrici delle più svariate funzioni, da quelle più semplici e strutturali a quelle complesse come la trasmissione di segnali nervosi o la conversione della luce in energia chimica, tanto per fare qualche esempio. Anche se spesso si dà molta importanza al DNA e ai geni (giustamente), l’informazione che essi contengono viene “messa in pratica” dalle proteine. Queste poi subiscono altre modifiche durante la loro vita, maturano con delle modificazioni chimiche, che sono spesso associate a fenomeni di regolazione e anche all’insorgenza di patologie. Potere identificare e sequenziare le proteine, con strumenti rapidi ed efficaci, avrebbe implicazioni di vasta portata anche per la diagnosi di malattie e la cura dei pazienti.
D. Questa innovativa tecnologia ha permesso di ottenere sviluppi nel sequenziamento del DNA a partire dagli anni ‘10 del 2000, quali nuove prospettive alla ricerca può aprire questo vostro studio?
R. Blasco: Ad oggi, tecnologie in grado di sequenziare direttamente singole proteine non sono disponibili. Esistono approcci che forniscono informazioni sul proteoma, ma richiedono dei passaggi complessi. In alcune tecniche le proteine vanno tagliuzzate e ricomposte, per altre servono complessi cicli di reazioni o macchinari molto sofisticati e costosi. Una tecnologia per sequenziamento diretto di proteine potrebbe portare a un cambio di passo nella ricerca in biologia e medicina forse paragonabile a quel che è accaduto qualche decade fa con la disponibilità di sequenziatori di DNA a basso costo, i cui riflessi e ricadute si stanno raccogliendo anche ora.
R. Mauro: Il nostro studio è un tassello che potrebbe aiutare a risolvere uno dei problemi principali dei sensori a nanoporo per le proteine: la possibilità di controllare il trasporto delle proteine attraverso il poro. Fino a qualche anno fa, solo pochi gruppi di ricerca studiavano la possibilità di usare approcci nanofluidici come l’elettroosmosi per controllare il trasporto di proteine. Ora vari gruppi si stanno muovendo in questa direzione e, il nostro studio, in qualche forma, suggerisce che questa sia una direzione promettente.
D. In quali altri campi possono essere utilizzati i sensori a nanoporo?
Blasco: Ovunque siano coinvolti attori biologici! Oltre alla medicina, la microbiologia e l’ambiente mi vengono in mente tutti quei processi industriali che coinvolgono organismi, come la produzione di yogurt, vino e birra.

 

 

LE PAROLE DELLA SCIENZA
Le parole del giorno
ELETTROOSMOSI: trasporto di acqua indotto da un campo elettrico esterno, da qui il nome elettroosmosi, dal greco ὠσμός “spinta, impulso”. Immaginiamo, ad esempio, un canale sulle cui pareti ci siano, cariche fisse negative e supponiamo che in questo canale ci sia una soluzione elettrolitica (acqua e sale). Queste cariche fisse sulle pareti del canale attireranno gli ioni positivi presenti in soluzione. A questo punto avremo all’interno del canale una prevalenza di ioni positivi. Sotto l’azione di un campo elettrico esterno, questi inizieranno a muoversi e trascineranno l’acqua.
ELETTROFORESI: movimento di una particella o molecola carica indotto da un campo elettrico esterno. È un fenomeno che si usa molto, ad esempio, nelle analisi biochimiche per muovere e separare molecole (proteine, DNA) per poi identificarle.

 

Sezione trasversale del nanoporo (in bianco), attraversato dal peptide (in azzurro, con gli aminoacidi carichi in rosso per i negativi e in blu per i positivi). Il poro attraversa una membrana lipidica (strato grigio) che divide il sistema in due compartimenti, immersi in acqua e sale (sfondo viola e grigio). Se tra i due lati applichiamo una differenza di potenziale si generano forze elettroforetiche (EF) e flussi elettroosmotici (EOF). Nel sistema raffigurato i EOF riescono a soverchiare le EF permettendo la traslocazione della proteina e la sua analisi.
 

Maker Faire Rome: al padiglione Ricerca in esposizione tecnologia e creatività degli ingegneri di Tor Vergata

Maker Faire Rome: al padiglione Ricerca in esposizione tecnologia e creatività degli ingegneri di Tor Vergata
di Pamela Pergolini
Ingegneria Roma “Tor Vergata” ha partecipato, nella categoria Universities, alla XI edizione di Maker Faire 2023. La manifestazione, che si è svolta presso la Fiera di Roma dal 20 al 22 ottobre, ha visto il coinvolgimento delle eccellenze in campo tecnologico e innovativo delle Università e degli Istituti di Ricerca, esposte al Padiglione 6  – RESEARCH.  
INGEGNERIA “TOR VERGATA”- TUTTI I PROGETTI IN ESPOSIZIONE A MAKER FAIRE ROME 2023
#INGTORVERGATA #MFR2023 #MakerFaireRome #ingegneriatorvergata

3D-PRINTING SNAKE-LIKE CONTINUUM ROBOTS
Robot che si ispirano a serpenti, proboscidi, tentacoli e piante: grazie alla loro forma riescono a operare in aree irraggiungibili da robot industriali come ad esempio nella riparazione di turbine aeree o interventi endoscopici nel corpo umano. Il gruppo di ricerca LARM – Laboratorio di Robotica e Meccatronica, Dipartimento Ingegneria Industriale, progetta e sviluppa robot e dispositivi intelligenti per migliorare la vita quotidiana che vanno dai robot di servizio a basso costo ai sensori medici per la riabilitazione. 
ADVANCED MODELLING AND DIGITAL FABRICATION IN ARCHITECTURAL ENGINEERING Strutture come origami?  La progettazione strutturale e la scienza delle costruzioni si combinano ai processi digitali innovativi per il design e la fabbricazione degli elementi edilizi: ciò permette di realizzare strutture efficienti con il minimo impegno di materiale e pratiche di auto-progettazione e di produzione diffusa. Il gruppo di ricerca multidisciplinare in Architettura tecnica e Scienza delle Costruzioni, Dipartimento di Ingegneria Civile e Ingegneria Informatica unisce la passione per il design parametrico e la fabbricazione digitale con quella per la meccanica.
ARCHITETTURA DI CONTROLLO REAL-TIME PER MANIPOLATORI IN TOKAMAK
Per il Tokamak, dispositivo in costruzione presso i laboratori ENEA di Frascati per lo sviluppo di energia pulita attraverso la riproduzione della reazione nucleare che alimenta il Sole e le altre stelle, i ricercatori stanno lavorando alla realizzazione di un sistema di controllo in tempo reale. L’architettura di controllo è basata su microcontrollore STM32 in grado di asservire i motori del manipolatore e gestire i segnali dei sensori, garantendo una resistenza alle radiazioni, e degli algoritmi, per la stima del grado di usura dei componenti elettronici. Il sistema prevede la connessione di diverse schede STM32F4 in grado di effettuare il controllo assi real-time mediante un sistema avanzato di pianificazione e determinazione delle variabili di giunto desiderate. Il gruppo di ricerca in Automazione e ControlloDipartimento di Ingegneria Civile e Ingegneria Informatica, collabora con l’ENEA, Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile.   
CYBERHUMANS
Protesi sensoriali e dispositivi epidermici saranno esposti in un unico ecosistema per formare  un “Cyber-Human”, grazie  all’uso di  un’interfaccia saranno visibili tutti i segnali raccolti in tempo reale. Il gruppo di ricerca Pervasive Electromagnetics Lab, Dipartimento Ingegneria Civile e Informatica, sviluppa nuovi dispositivi radio per il rilevamento a corto raggio pronti per essere integrati senza soluzione di continuità in oggetti, prodotti, edifici e anche all’interno del corpo umano con applicazione alla Personal Healthcare e all’Industria 4.0.
HEART RATE VARIABILITY E HARMONICITY
Rivoluzionare il campo dei programmi personalizzati di allenamento e dei sistemi avanzati di analisi dello stato di forma e della performance sportiva grazie a un algoritmo innovativo brevettato, utile per scopi di allenamento agonistico e di riabilitazione. Il sistema utilizza la misura dell’Heart Rate Variability, ovvero l’intervallo tra il battito cardiaco a riposo e quello sotto sforzo, per lo sviluppo di un tracker innovativo di virtual coaching dedicato ad atleti, soggetti sani o affetti da disturbi cronici e come ausilio per un programma di riabilitazione. Il gruppo di ricerca HaRmonicV Control & Consulting,  Dipartimento Ingegneria Elettronica, vede la collaborazione dell'”Unità cardiaco-polmonare” presso l’IRCCS San Raffaele Pisana. Harmonic Five è tra le startup vincitrici della Startcup Lazio edizione 2022.

PERMANENT STRUCTURAL SAFETY MONITORING SYSTEM
Sensori per travi, pilastri, solai, realizzati per la sicurezza strutturale, e sensori sismici, per lo studio dei terremoti: controllare gli edifici dal punto di vista della “salute” delle strutture, come avviene oggi ad esempio per le automobili. è possibile grazie a un uso diffuso di dispositivi WiFi su piattaforma IoT – Internet of Things. Il gruppo di ricerca Moni2BSafe, Dipartimento di Ingegneria Civile e Ingegneria Informatica, si occupa della sicurezza delle strutture in ingegneria civile (edifici e ponti), con riferimento al rischio di invecchiamento e di collasso. È un gruppo di ricerca interdisciplinare che si avvale della collaborazione dell’INFN di “Tor Vergata” con esperti di strutture di reti. 
STV: ALLA SCOPERTA DELLA CREATIVITÀ DEGLI INGEGNERI DI DOMANI 
Il prototipo di vettura in stile Formula, con telaio tubolare e motore endotermico derivato dalla produzione motociclistica, un KTM LC4 da 690cc, è stato progettato e realizzato dalla Scuderia Tor Vergata (STV), fondata nel 2009, il team di Formula Student dell’Università degli Studi di Roma Tor Vergata, Dipartimento di Ingegneria Industriale. Ad oggi la scuderia è composta da oltre 80 studenti, uniti da una passione e un obiettivo comune: condividere e applicare le conoscenze tecniche e teoriche acquisite nel corso degli studi universitari per la realizzazione di una monoposto.
Leggi la notizia sul sito di Ateneo  Maker Faire 2023: Roma Tor Vergata all’evento annuale che promuove le idee e la creatività
Edizioni precedenti  
Ingegneria “Tor Vergata” a Maker Faire Rome 2022 
Tra gli stand di Ingegneria Tor Vergata a Maker Faire 2018
guarda il video

 

360° Water Technology Experience, una settimana in Olanda sull’uso sostenibile dell’acqua

360° Water Technology Experience, una settimana in Olanda sull’uso sostenibile dell’acqua
Nell’ambito dell’iniziativa dell’Unione europea “Water4All”, il Centro europeo di eccellenza per la Tecnologia idrica sostenibile -Wetsus organizza l’evento “360⁰ Water Technology Experience dedicato agli studenti universitari dei corsi di laurea (triennale) in Ingegneria, Ingegneria chimica, Tecnologia ambientale e campi affini. Il corso residenziale si svolgerà in lingua inglese e si terrà dall’11 al 15 marzo 2024 a  Leeuwarden (Paesi Bassi)  presso il Centro di ricerca Wetsus.
 «L’obiettivo di “360⁰ Water Technology Experience” è sensibilizzare le nuove generazioni sul tema dell’utilizzo sostenibile dell’acqua e renderli consapevoli delle sfide presenti e future che ci attendono» – afferma Valentina Sechi, direttrice del Master “Water Technology” (joint degree) all’Università di Wageningen, (Paesi Bassi) e responsabile del gruppo di ricerca “Soil – nature-based technology to enhance drought resilience” presso l’Istituto di ricerca Wetsus. Gli studenti avranno la possibilità di accedere a tecnologie idriche innovative dei Paesi Bassi, pratiche sostenibili e progetti di ricerca, conoscere casi di studio di vita reale ed essere aggiornati sui progressi nel trattamento dell’acqua. «L’idea è di riunire studenti provenienti da tutta Europa intorno al tema “Sustainable Water Technology”, grazie alla partecipazione a esperienze formative che vanno dai workshop alle attività interattive, dalle visite sul campo ai contatti con ricercatori e aziende nel settore.
Per accedere alle selezioni è necessario avere una buona conoscenza della lingua inglese. Livello minimo inglese richiesto: B2  
Le spese di viaggio, alloggio e attività, per gli studenti che verranno selezionati, sono  completamente coperte.
360⁰ Water Technology Experience application – Iscrizioni entro il 20 novembre 2023
SAVE THE DATE –  360⁰ Water Technology Experience_Invite 

Mobilità intelligente, un’app per far scattare il verde e controllare il transito delle ambulanze

Mobilità intelligente, un’app per far scattare il verde e controllare il transito delle ambulanze

 

 

di Pamela Pergolini

Laureato all’Università di Roma “Tor Vergata” in Ingegneria Elettronica, un lavoro presso Reti Ferroviarie Italiane come valutatore di ACC – Apparati di Controllo Computerizzati, Luigi Di Pardo ha sviluppato un sistema automatico di controllo dei semafori per il transito dei mezzi di soccorso di emergenza. Lo ha chiamato GLES, acronimo di “Green Light Emergency System”. L’ideazione e l’analisi di fattibilità, le scelte ingegneristiche attuate durante la fase di sviluppo del sistema e l’implementazione di migliorie e sviluppi futuri sono le fasi descritte nella sua tesi di laurea specialistica “GLES: un sistema automatico di controllo dei semafori di una intersezione per mezzi di soccorso in emergenza”, relatore il prof. Marcello Salmeri, coordinatore del Corso di Laurea in Ingegneria Elettronica, discussa nella sessione estiva 2023 a “Tor Vergata”. Abbiamo incontrato Luigi per farci raccontare il suo progetto.
D. Innanzitutto Luigi, come ti è venuta l’dea?
R. Durante i miei spostamenti quotidiani in treno, almeno un paio di volte al giorno, per recarmi al lavoro, mi è capitato spesso di osservare i disagi che si creavano a un incrocio della città (Roma), tra la via Casilina e via di Tor Pignattara, da un lato, e piazza della Marranella, dall’altro, nella quale confluiscono via della Marranella e via dell’Acqua Bullicante. In diverse occasioni mi sono ritrovato in attesa con il semaforo rosso e con le ambulanze, a sirene spiegate, che non riuscivano a raggiungere l’intersezione per attraversarla. Talvolta rimanevano bloccate dagli altri veicoli, costrette ad aspettare che il semaforo mostrasse il verde anche per più cicli, prima di riuscire a passare. Così mi è venuta l’idea di un sistema che riuscisse a controllare in modo preferenziale il flusso dei veicoli di una intersezione semaforizzata.
D. Cambiare la configurazione delle luci di un semaforo può essere rischioso, ci sono regole del codice della strada da rispettare e condizioni di sicurezza per tutti gli utenti della strada…
R. Sono partito da un approfondito studio dell’intersezione stradale in questione e dall’analisi delle misure dei tempi delle diverse configurazioni dei semafori, considerando quanto previsto dal codice della strada. In particolare, la normativa prevede che quando un mezzo di soccorso in caso di emergenza mette in funzione la sirena, tutti i veicoli presenti sulla sede stradale sono obbligati a liberare il passaggio al fine di porre il minimo disagio al transito del mezzo di soccorso. Per quanto i conducenti possano reagire in modo adeguato al suono della sirena, il mezzo di soccorso sarà comunque portato a trovare il percorso più agevole per superare l’ingorgo. Il mezzo di soccorso sarà portato ad avanzare a ridosso della linea di mezzadria delle corsie tra i due sensi di marcia. Sebbene questa soluzione si riveli efficace, in alcuni scenari risulta non praticabile, ed è proprio questo il caso dell’intersezione stradale che ho analizzato, dal momento che topologicamente è realizzata a corsie separate, per senso di marcia e da una corsia preferenziale adibita al passaggio di un treno metropolitano.
D. Qual è il principio alla base del sistema che hai messo a punto?
R.
Nel caso in cui un mezzo di soccorso in emergenza abbia la necessità di attraversare l’incrocio, GLES subentra in modo automatico nel controllo dell’aspetto delle luci mostrate dai semafori che regolano il flusso veicolare dell’intersezione stradale. Questo grazie a una scheda d’interfaccia, che traduce il comando in una comunicazione verso il semaforo, senza modificare il sistema automatico che gestisce il ciclo e le fasi dei semafori dell’intersezione.
D. Dunque il sistema genera al momento dell’emergenza un’onda verde a favore della direzione da cui proviene l’ambulanza…
R.
Proprio così, il sistema GLES congela in quel momento la configurazione dei semafori e genera la sequenza necessaria a dare il verde nella direzione della quale proviene l’ambulanza (Configurazione di Verde Unico). Per far capire al sistema da dove arriva il mezzo di soccorso in emergenza ho definito delle zone che ho chiamato di “approccio” e che indentificano l’area verso e nei pressi dell’intersezione. La Configurazione di Verde Unico è efficace anche nei confronti dei pedoni che si dovessero trovare a dover attraversare uno dei tronchi dell’intersezione, infatti questo tipo di configurazione prevede il rosso anche per i semafori pedonali.
D. Come viene attivato il GLES?
R. Il sistema è costituito da una parte di comando, che comprende due microcontrollori, il cervello della GLES che gestisce tutti i semafori presenti in quell’incrocio, e una parte di interfaccia, che comunica con l’ambulanza e con i semafori. Il sistema GLES può essere attivato direttamente dall’operatore sul mezzo di soccorso grazie a un’applicazione installata sullo smartphone. L’applicazione dopo aver verificato l’emergenza e la posizione dell’ambulanza, accetta l’emergenza soltanto se registra il mezzo in zona di “approccio” oppure di “arrivo”, questa seconda opzione è data dalla possibilità che nelle vicinanze sia presente un ospedale, in questo caso l’”Ospedale Generale Madre Giuseppina Vannini Figlie di San Camillo”, che si trova a poche centinaia di metri dall’intersezione di “Tor Pignattara”. L’emergenza potrà essere annullata sempre da telefono cellulare. 
D. Che cosa succede al normale ciclo dei segnali luminosi dei semafori, come si torna alla “routine”?
R. Questa domanda pone l’attenzione forse sull’aspetto più difficile, a livello ingegneristico, del funzionamento del sistema perché i semafori continuano a generare il loro ciclo di routine anche se noi non vediamo la sequenza dei colori verde-arancione-rosso. La difficoltà, terminata l’emergenza, sarà quella di riagganciare in corsa il sistema, che non ha mai smesso di funzionare. Ed è anche la parte più delicata perché una errata risincronizzazione del sistema semaforico potrebbe creare confusione e incertezza, seppur momentanea, negli automobilisti e pedoni.
D. Come sei riuscito allora a riagganciare il controllo dei semafori dell’intersezione in sicurezza? 
R. Il sistema deve passare sempre per la Configurazione di Rosso Unico, senza violare quanto stabilito dal codice della strada in termini di sequenza degli aspetti e dei tempi di permanenza degli stessi. Il passaggio allo stato di “all red” è previsto sia per permettere di riagganciare l’aspetto mostrato alla Routine dei semafori dell’intersezione, è il caso della Sequenza di Ritorno, sia per prendere il controllo dei semafori dell’intersezione, è il caso della Sequenza di Transizione. Qualora vengano riscontrati dei malfunzionamenti del sistema GLES prima dell’inizio della Sequenza di Transizione, il sistema GLES non interviene per non introdurre eventuali ulteriori ritardi ai tempi di attraversamento dell’intersezione; qualora invece vengano rilevati malfunzionamenti del GLES in una qualsiasi altra fase, allora il sistema passerà all’aspetto di Giallo lampeggiante per tutti i semafori. In questa fase, se il sistema ne è ancora in grado, procederà a riagganciare il controllo dei semafori dell’intersezione mediante la Sequenza di Ritorno, altrimenti il GLES fa l’unica cosa che può fare: rilasciare il controllo dei semafori in modo diretto alla routine, qualunque sia la configurazione mostrata, senza nessun passaggio intermedio. 
D. Quali sono gli sviluppi futuri per il GLES?
R. Il sistema è stato concepito per essere impiegato in qualsiasi impianto semaforico con il minor impatto possibile sull’impianto già in funzione. Tra le migliorie e le implementazioni future, sicuramente quella di gestire il passaggio di più ambulanze in base ai diversi codici di emergenza (rosso, arancione, azzurro, verde, bianco). Il sistema, inoltre, può interessare diverse intersezioni stradali, particolarmente problematiche e congestionate dal traffico, ed essere collegato a un sistema di navigazione satellitare che suggerisce un itinerario nel quale sono presenti intersezioni collegate a GLES che permettono di attivare la “Configurazione di Verde Unico”. Infine, in futuro, si può pensare di abilitare altri mezzi con il sistema GLES, ad esempio i mezzi dei vigili del fuoco e della polizia stradale.